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Abstract
Goal and Scope: This article describes a study whose goal was to assess students’
prior knowledge level with respect to a target domain based solely on characteristics of
the natural language interaction between students and conversational Intelligent
Tutoring Systems (ITSs). We report results on data collected from two conversational
ITSs: a micro-adaptive-only ITS and a fully-adaptive (micro- and macro-adaptive) ITS.
These two ITSs are in fact different versions of the state-of-the-art conversational ITS
DeepTutor (http://www.deeptutor.org).

Approach and Results: Our models rely on both dialogue and session interaction
features including time on task, student generated content features (e.g., vocabulary
size or domain specific concept use), and pedagogy-related features (e.g., level of
scaffolding measured as number of hints). Linear regression models were explored
based on these features in order to predict students’ knowledge level, as measured
with a multiple-choice pre-test, and yielded in the best cases an r = 0.949 and adjusted
r-square = 0.833. We discuss implications of our findings for the development of future
ITSs.

Keywords: Learner assessment, Dialogue-based intelligent tutoring systems,
Educational technologies

Introduction
Assessment is a key element in education in general and in Intelligent Tutoring Systems
(ITSs; (Rus et al. 2013)) in particular because fully adaptive tutoring presupposes accurate
assessment (Chi et al. 2001; Woolf 2008). Indeed, a necessary step towards instruction
adaptation is assessing students’ knowledge state such that appropriate instructional tasks
(macro-adaptation) are selected and appropriate scaffolding is offered while students are
working on a task (micro-adaptation or within-task adaptation).
We focus in this article on assessing students’ prior knowledge in dialogue-based ITSs

based on characteristics of the tutorial dialogue interaction between students and such
systems. Assessing students’ other states, e.g. affective state, that are important for learn-
ing and therefore important to further adapt instruction to each individual learner is
beyond the scope of this work.
When students start interacting with an ITS, their prior knowledge with respect to the

target domain is typically assessed using a multiple choice pre-test although other forms
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of assessment such as open answer problem solving are sometimes used. The pre-test
serves two purposes: enabling macro-adaptation in ITSs, i.e. the selection of appropriate
instructional tasks for a student based on student’s knowledge state before the tutoring
session starts, and, when paired with a post-test, establishing a baseline from which the
student progress is gauged by computing learning gains (post- minus pre-test score). This
widely used pre-test/post-test experimental framework is often necessary in order to infer
whether the treatment was effective relative to the control.
While the role of a pre-test is important for assessing students’ prior knowledge, there

are several challenges with having a pre-test. First, a pre-test (as well as the paired post-
test) takes up a non-trivial amount of time. This is particularly true for experiments
consisting of only one session in which case the pre-test and post-test may take up to half
the time of the full experiment. For instance, a 2-h experiment could be broken down into
three parts: 30 min for pre-test, 1 h of actual interaction with an ITS, and 30 min for post-
test. Altogether, in this particular case the pre-test and post-test take 1 h which is half the
time of the whole experiment.
More worryingly is the fact that in such experiments the pre-test may have a tiring

effect on students. By the time students reach the post-test many of them will be so tired
they will underperform even if they learned something during the actual training, thus,
jeopardizing the whole experiment. For instance, in one of our experiments about 30%
of the subjects simply randomly picked one of the choices for the multiple-choice ques-
tions in the post-test without even reading the question. We observed this behavior by
analyzing the time students took to pick their choice after they were shown a question on
screen. About a third of the students took on average less than 5 s per question which is
not even enough to read the text of the question. By comparison, the same students took
on average 36 s to respond to similar questions in the pre-test. By eliminating the pre-test
in the above illustrative experiment, we can reduce the overall experimental time to 1 h
and 30 min, thus reducing tiring effects. By eliminating both the pre-test and post-test,
we can further reduce the total experiment time.
Additionally, many times there is a disconnect between the pre- and post-test ques-

tions and the actual learning tasks and process. To overcome this challenge, Shute and
Ventura (2013) argue for a shift towards emphasizing performance-based assessment
which is about evaluating students’ skills and knowledge while applying them in authentic
contexts. For instance, reading instructions in a role-playing game allows assessing stu-
dents’ reading comprehension skills (Shute and Ventura 2013). Using explicit tests in such
contexts would interfere with the main task and are therefore not recommended. They
advocate for the use of stealth assessment while students engage in a particular activity.
Like in stealth assessment, we advocate here for non-intrusive assessment during prob-
lem solving in dialogue-based ITSs. To this end, the goal of our work presented here was
to investigate to what degree we can automatically infer students’ knowledge level directly
from their performance while engaging in problem solving with the help of an ITS.
Eliminating the need for learners to go through a standard pre-test and a post-test saves

time for more training, eliminates tiring effects and testing anxieties, and ultimately pro-
vides a more accurate picture of students’ capabilities as the assessment is conducted in
context, i.e. while they solve problems in our case. In particular, we investigate how well
we can predict students’ prior knowledge, as measured by a standardmultiple-choice pre-
test, based on characteristics of the tutorial dialogue interaction with the hope that if the
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predictions are close enough we can do without the pre-test in the future. We are also
interested in finding out the minimum tutorial dialogue interaction that would yield an
accurate estimate of students’ prior knowledge.
We would like to emphasize that we are not arguing for a complete elimination of

explicit assessments such as multiple-choice tests which have their own advantages for
learning such as testing effects (the memory retrieval processes activated during test-
ing benefit long-term memory of the target material; (Roediger and Karpicke 2006)).
Rather, we propose to investigate to what extent we can measure students’ knowledge
level from interaction characteristics such that, when needed, we can employ this kind of
non-intrusive assessment.
We conducted our research on data collected from an experiment with high-school

students using the state-of-the-art conversational computer tutor DeepTutor (Rus et al.
2013). As mentioned, our goal was to find interaction features that are good predictors
of students’ pre-test scores and to create prediction models that would be as useful as
the multiple choice pre-tests in measuring students’ prior knowledge. The best model we
found can predict students’ prior knowledge, as measured by a summative pre-test, with
r = 0.949 and adjusted r-square = 0.833. We also determined the minimum dialogue
length which is necessary to be able to make the best predictions.
The remainder of the article is organized as follows: Section “Related work” briefly

discusses previous relevant work while Section “DeepTutor: a state-of-the-art dia-
logue-based intelligent tutoring system” presents a brief overview of the computer tutor
that provided the context for our experimental analysis. The following section decribes
the approach. The data is presented in the next section which is followed by the “Exper-
iments and results” section offering details about the various prediction models and the
results we obtained from these models. The article ends with a section on conclusions
and further work.

Related work
The most directly relevant previous work to ours is by Lintean et al. (2012) who studied
the problem of inferring students’ prior knowledge based on prior knowledge activation
(PKA) paragraphs elicited from students. PKAs were generated by students as part of a
meta-cognitive training program. Lintean and colleagues employed a myriad of methods
to predict students’ prior knowledge including comparing the student PKA paragraphs to
expert-generated paragraphs or to a taxonomy of concepts related to the target domain,
which in their case was biology. Students’ prior knowledge level or mental model were
modeled as a set of three categories: low mental model, medium mental model, and high
mental model. There are significant differences between our work and theirs. First, we
deal with dialogues as opposed to explicitly elicited prior knowledge paragraphs. Second,
we do not have access to a taxonomy of concepts against which we can compare stu-
dents’ contributions. Third, we model students’ prior knowledge using scores obtained
on a multiple-choice pre-test.
Predicting students’ learning and satisfaction is another area of research directly rel-

evant to ours. Among these, we mention the work of Forbes-Riley and Litman (2006)
who used three types of features to predict learning and user satisfaction: system specific,
tutoring specific, and user-affect-related. They employed the whole training session as
unit of analysis, which is different from our own analysis because we use instructional
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task, i.e. a Physics problem in our case, as the unit of analysis. Our unit of analysis serves
better our purpose of finding out the minimum number of leading instructional tasks to
accurately assess students’ knowledge level. Furthermore, their work was in the context
of a spoken dialogue system while in our case we focus on a chat-based/typed-text-based
conversational ITS. Another difference between our work and theirs is their focusing on
user satisfaction and learning while we focus on identifying students’ knowledge level.
Williams and D’Mello (2010) worked on predicting the quality of student answers (as

error-ridden, vague, partially-correct or correct) to human tutor questions, based on
dictionary-based dialogue features previously shown to be good detectors of cognitive
processes (cf. (Williams and D’Mello 2010)). To extract these features, they used LIWC
(Linguistic Inquiry and Word Count; (Pennebaker et al. 2001)), a text analysis software
program that calculates the degree to which people use various categories of words across
a wide array of texts genres. They reported that pronouns (e.g. I, they, those) and dis-
crepant terms (e.g. should, could, would) are good predictors of the conceptual quality of
student responses.
Yoo and Kim (2012) worked on predicting the project performance of students and

student groups based on stepwise regression analysis on dialogue features in Online Q&A
discussions. To extract dialogue features they made use of LIWC and speech acts, which
are semantic categories such as Greetings or Questions that indicate speakers’ intentions
(Moldovan et al. 2011). Yoo and Kim found that the degree of information provided by
students and how early they start to discuss before the deadline, are two important factors
explaining project grades. A similar research was conducted by Romero and colleagues
(Romero et al. 2013) who also included (social) network related features. Their statistical
analysis showed that the best predictors related to students’ dialogue are the number of
contributions (messages), number of words, and the average score of the messages.
In our work presented here, we use some of the features described by the above

researchers, such as session length or dialogue turn length, and other novel features such
as information content.

DeepTutor: a state-of-the-art dialogue-based intelligent tutoring system
The work described in this article has been conducted in the context of the state-
of-the-art intelligent tutoring system DeepTutor (http://www.deeptutor.org). To better
understand this context, we offer in this section an overview of intelligent tutoring
systems in general and of DeepTutor in particular.

Intelligent tutoring systems

One-on-one human tutoring is one of the most effective solutions to instruction
and learning that has attracted the attention of many for decades. Encouraged by
the effectiveness of one-on-one human tutoring (Bloom 1984), computer tutors such
as DeepTutor that mimic human tutors have been successfully built with the hope
that a computer tutor could be available to every child with access to a computer
(Rus et al. 2013).

How effective are state-of-the-art ITSs at inducing learning gains in students?

An extensive review of tutoring research by VanLehn (2011) showed that computer tutors
are as effective as human tutors. VanLehn reviewed studies published between 1975

http://www.deeptutor.org
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and 2010 that compared the effectiveness of human tutoring, computer-based tutor-
ing, and no tutoring. The conclusion was that the effectiveness of human tutoring is
not as high as it was originally believed (effect size d = 2.0) but much lower (d =
0.79). The effectiveness of computer tutors (d = 0.78) was found to be as high as the
effectiveness of human tutors. So, there is something about the one-on-one connec-
tion that is critical, whether the student communicates with humans or computers.
Graesser et al. (1995) argued that the remedial part of tutorial interaction in which
tutor and tutee collaboratively improve an initial answer to a problem is the primary
advantage of tutoring over classroom instruction. Chi et al. (2004) advanced a related
hypothesis: tutoring enhances students’ capacity to reflect iteratively and actively on
domain knowledge. Furthermore, one-on-one instruction has the advantage of engag-
ing most students’ attention and interest as opposed to other forms of instruction such
as lecturing/monologue in which the student may or may not choose to pay attention
(VanLehn et al. 2007).

Dialogue-based intelligent tutoring systems

Intelligent Tutoring Systems (ITSs) with conversational dialogue form a special cate-
gory of ITSs. The development of conversational ITSs such as DeepTutor is driven by
explanation-based constructivist theories of learning and the collaborative constructive
activities that occur during human tutoring (Rus et al. 2013). Conversational ITSs have
several advantages over other types of ITSs. They encourage deep learning as students
are required to explain their reasoning and reflect on their basic approach to solving a
problem. Such conceptual reasoning is more challenging and beneficial than mechanical
application of mathematical formulas (Hestenes et al. 1992). Furthermore, conversa-
tional ITSs have the potential of giving students the opportunity to learn the language of
scientists, an important goal in science literacy. A student associated with a more shal-
low understanding of a science topic uses more informal language as opposed to more
scientific accounts (Mohan et al. 2009).

DeepTutor

DeepTutor is a state-of-the-art conversational ITS that is intended to increase the effec-
tiveness of conversational ITSs by promoting deep learning of complex science topics
through a combination of advanced domain modeling methods, deep language and dis-
course processing algorithms, and advanced tutorial strategies. DeepTutor is the first
ITS based on the framework of Learning Progressions (LPs; (Corcoran et al. 2009)). LPs,
which were developed by the science education research community, can be viewed as
incrementally more sophisticated ways to think about an idea that emerge naturally while
students move toward expert-level understanding of the idea. DeepTutor is an effective
ITS: a recent experiment showed that DeepTutor is as effective as human tutors (Rus et al.
2014) yielding effect sizes comparable to the effectiveness of human tutors as reported by
VanLehn (2011).
DeepTutor currently targets the domain of conceptual Newtonian Physics but it

is designed with scalability in mind (cross-topic, cross-domain). DeepTutor has been
developed as a web service and a first prototype is fully accessible through a
browser from any Internet-connected device, including regular desktop computers
and mobile devices such as tablets, thus moving us closer to the vision of providing
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cost-effective and tailored instruction to every learner, child or adult, anywhere,
anytime.
The spin-off project of AuthorTutor (http://www.authortutor.org) aims at efficiently

porting DeepTutor-like ITSs to new domains by investigating well-defined principles and
processes as well as developing software tools that would enable experts to efficiently
author conversational computer tutors across STEM disciplines. Another authoring tool,
called SEMILAR (derived from SEMantic simILARity toolkit; (Rus et al. 2013)), is being
developed as well to assist with authoring algorithms for deep natural language process-
ing of student input in conversational ITSs. More information about the SEMILAR toolkit
is available at http://www.semanticsimilarity.org.
It is beyond the scope of this article to describe all the novel aspects of DeepTutor or

related projects. Instead, we present next the general instructional framework in Deep-
Tutor with an emphasis on macro- and micro-adaptation which is important to know in
order to better understand the data analyses presented in this article.
We would like to just mention that DeepTutor proposed major improvements

in core ITSs tasks: modeling the task domain, tracking students’ knowledge states,
selecting appropriate learning trajectories, and the feedback mechanisms. Advances
in these core tutoring tasks will move state-of-the-art ITSs closer to implement-
ing fully adaptive tutoring which means tailoring instruction to each individual
student.

The DeepTutor instructional framework

During a typical tutorial session with DeepTutor, the system challenges students to
solve a number of problems that are carefully selected by the system in order to opti-
mize student learning. A snapshot of the learner view in DeepTutor is shown in Fig. 1.
When working on a particular problem, students are first asked to provide a solu-
tion that must include a justification based on concepts and principles of the target
domain, which is Newtonian Physics in the case of our study presented here. The stu-
dent answer is automatically analyzed by comparing it with an ideal answer, provided
by an expert apriori, using advanced natural language processing methods (Rus et al.
2013). If there are missing steps in the student solution, the system encourages the stu-
dent to discover and articulate them with the help of progressively informative hints
in the form of questions (e.g., Which of Newton’s laws is relevant to this situation and
why?, What does Newton’s second law say?). Furthermore, if the student articulates
misconceptions the DeepTutor system immediately corrects them. That is, DeepTutor
encourages students to self-explain their solution and only offers help when the student is
floundering.
All other things equal, low knowledge students will most likely struggle to pro-

vide solid self-explanations and therefore most likely to omit important steps in the
solution and articulate misconceptions which would lead to more scaffolding dia-
logue moves in terms of hints and correcting misconceptions, respectively, on the
part of the computer tutor. High knowledge students would need less scaffolding
and therefore the corresponding dialogues should be shorter. That is, each dialogue
between the system and a student has a unique signature or dialogue interaction
fingerprint which we exploit in our work here in order to infer students’ prior
knowledge.

http://www.authortutor.org
http://www.semanticsimilarity.org
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Fig. 1 Snapshot of the browser-based DeepTutor interface. Snapshot of the DeepTutor interface as seen by
the learner. The top-left image shows the browser-based interface showing a Physics problem on the top
right pane and the Dialogue history on the left pane. The Multimedia box (bottom-right pane) synchronizes
with the dialogue such that information identified in the dialogue is represented graphically in the
multimedia box, e.g. showing velocity and force vectors graphically once mentioned in the dialogue. The
bottom (horizontal view) and right (vertical view) images show the app-based interface that students see if
using an Android or iOS app to access DeepTutor

Macro- andmicro-adaptivity in DeepTutor: the 3-loop instructional framework

The behavior of DeepTutor can be described using three major loops: the task loop, the
solution-step loop, and the hint loop. This framework was inspired from VanLehn’s two-
loop characterization of tutoring systems (VanLehn et al. 2007). According to VanLehn,
ITSs can be described in broad terms as running two loops: the outer loop, which selects
the next task to work on, and the inner loop, which manages the student-system interac-
tion while the student works on a particular task. The outer loop corresponds to our task
loop while the inner loop corresponds to both the solution-step and hint loops.
We added a third loop, the hint loop as shown in Fig. 2, to better manage the within-task

(or micro-level) adaptivity in DeepTutor. Such a separation of the solution-step loop and
the hint level loop was necessary to enable a finer-gain control and the implementation of
adequate instructional strategies at these two different levels of instruction. The solution-
step loop basically iterates over the logical steps of an ideal solution and implements
strategies that decide which solution step to focus on next. For instance, an instructional
strategy guiding the solution-step loop may decide to work with a student on discover-
ing and articulating a particular step of the solution or just skip the step depending on
student’s knowledge level with respect to the target domain and student’s performance
on the current problem so far. For example, more advanced students might benefit more
from going through the solution at a faster pace in which case “obvious” steps might be
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Fig. 2 The 3-loop instructional framework in DeepTutor The 3-loop instructional framework in DeepTutor
consists of three major loops: the task loop which loops through the set of tasks in a tutorial session, the
solution-step loop which loops through the set of steps in a solution and initiates a hint loop for each
missing step in the studnet solution (an X mark on a step in the figure means the student missed to mention
that step in their initial solution; the last step is a summarization step in which students are given a summary
of the solution), and the hint loop which loops through the set of hints related to a step in a solution

skipped. Once a solution step is set as the next instructional sub-goal, the hint level loop
takes care of instructional strategies that scaffold students’ self-discovery of that partic-
ular solution-step. That is, the role of the hint level loop is to enact strategies that help
students construct missing steps in the solution by themselves with minimal help from
the system based on constructivist theories of learning. According to these constructivist
theories, students construct their own knowledge during learning and the role of the
instructor or tutor is to just facilitate this process by offering the right level of support
when needed. Accordingly, in ITSs students only get help when needed and in the right
doze, i.e. less knowledge students will receive sequences of progressivelymore informative
hints compared to more advanced students who could do well with more vague hints.
We believe that our framework better explains and guides the development of a fully

adaptive ITSs. Indeed, having only two loops, the outer loop and the inner loop, is too
coarse and obscures important instructional layers that need be addressed explicitly by
adopting appropriate instructional strategies as illustrated above for the solution-step and
hint level loops. In fact, Rus et al. (2013) suggested there should be even more loops (than
the three in our framework) accounted for in a fully independent, comphrehensive, longi-
tudinal education technology that monitors and tutors students over a long period of time
spanningmany topics and grade levels. According to Rus and colleagues, there should be a
loop for each of the following instructional levels: curriculum/standards level, the course
level, the lesson level, the activity level, the solution level, and the hint level. Each such
loop will have to be guided by different instructional strategies that are appropriate for
the corresponding instructional level. For instance, strategies for sequencing instructional
tasks across many instructional sessions in a course, which should be informed by prin-
ciples of interleaving and spacing (Pavlik and Anderson 2008) that have been shown to
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promote long-term learning, should be implemented as part of the course level loop in the
Rus and colleague’s taxonomy of instructional levels. For simplicity and to fairly describe
the current state of the DeepTutor system, we only limit our discussion to the three-loop
framework mentioned above which addresses the activity (or task) instructional level,
solution-step instructional level, and hint instructional level. These three loops are essen-
tial in order to understand micro- and macro-adaptivity in DeepTutor which in turn are
important to understand the context of our presented here.

The approach
Our approach to predict students’ knowledge level in the context of dialogue-based ITSs
relies on the fact that each tutorial dialogue between the system and a student has its own
characteristics which are strongly influenced by students’ background and the nature of
instructional tasks. Indeed, students’ knowledge level is reflected in the tutorial dialogue
between the system and the student, e.g. as the learner becomesmore competent the level
of help from the ITS should drop. The level of help can be quantified as the number of
hints, for instance. Furthermore, the dialogue characteristics are also influenced by the
nature of the training tasks. If similar tasks (addressing same concepts in similar or related
contexts) are used throughout a whole tutorial session, one might expect that by the time
a student reaches the last problems in the session he would master them, thus, requiring
less help from the tutor by the end of the session. On the other hand, if the problems
are increasingly challenging or simply unrelated to each other then the students would be
continuously challenged throughout the whole session; in such a scenario the number of
hints a student receives should not drop throughout a session.
We are exploring the relationship between students’ prior knowledge and dialogue fea-

tures in two different setups with two different task selection strategies which allows us to
explore the impact of different task selection policies on the dialogue characteristics and
therefore on our models for predicting students’ prior knowledge. Indeed, we work with
data collected from training sessions with two versions of DeepTutor: micro-adaptive-
only and fully-adaptive (macro- and micro-adaptive). In the micro-adaptive-only condi-
tion, students are working on tasks that were so selected to address typical challenges
for all students, i.e. following a one-size-fits-all approach. In this micro-adaptive-only
condition, students received scaffolding while working on a task (within-task adaptiv-
ity) based on their individual performance on that particular task. For instance, if a
student articulated a misconception during the solving of a problem, the system would
correct it.
In the macro-adaptive condition, students were assigned to four groups correspond-

ing to four knowledge levels (low knowledge, medium-low knowledge, medium-high
knowledge, and high-knowledge) and appropriate instructional tasks were assigned to
each group using an Items-Response Theory style analysis (Rus et al. 2014). That is,
high-knowledge students received more challenging problems appropriate for their level
of expertise while low knowledge students received less challenging problems. The
consequence of this more-adaptive task selection policy is reflected in the dialogue char-
acteristics as, for instance, the percentage of hints (explained later) is expected to be
similar for both high-knowledge and low-knowledge students as the tasks are similarly
challenging relative to the knowledge level of the students. Within a task, the fully-
adaptive ITS offered identical micro-adaptivity to the micro-adaptive-only ITS. It should
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be noted that in themicro-adaptive-only case, the problemswere selected (two each) from
the set of problems used for the four knowledge groups in the fully-adaptive condition.

The features of the prediction model

The proposed approach relies on a set of features that was inspired from the previous
work mentioned earlier as well as other work such as automated essay scoring (Shermis
and Burstein 2003) in which the goal is similar to some extent to ours: infer students’
knowledge level or skills based on their language in a written essay. Furthermore, our set
of features is grounded in the learning literature as explained next.
The set of dialogue interaction features we employed can be classified into three

major categories: time-on-task, generation, and pedagogy. Time-on-task, which reflects
how much time students spend on a learning task, correlates positively with learning
(Taraban and Rynearson 1998). Time-on-task is measured in several different ways in our
case such as total time (in minutes) or normalized total time (we used the longest dia-
logue as the normalization factor). We computed several additional time-related features
such as average time per turn and winsorized versions of the basic time-related features.
Generation features are about the amount of text produced by students. Greater

word production has been shown to be related to deeper levels of comprehensions
(Chi et al. 2001; VanLehn et al. 2007). We mined from our dialogues many generation-
related features such as dialogue length, average turn length, vocabulary size, content
word vocabulary size (content words: nouns, verbs, adjectives, and adverbs), and target
domain vocabulary size, i.e. a measure of howmany words from our target domain, which
is Physics, students used.
Lastly, we extracted pedagogy-related features such as how much scaffolding a student

received (e.g. number of hints) during the training. Scaffolding is well documented to
lead to more learning than lecturing or other, less interactive types of instruction such
as reading a textbook (VanLehn et al. 2007). Feedback is an important part of scaffolding
and therefore we also extracted features about the type (positive, neutral, negative) and
frequency of feedback (Shute 2008).
We extracted raw features as well as normalized versions of the features. In some cases,

the normalized versions seem to be both more predictive and more interpretable. For
instance, the number of hints could vary a lot from simpler/short problems, where the
solution is relatively short and require less scaffolding in general, to more complex prob-
lems with longer solutions which require more scaffolding as there are more steps in the
solution. A normalized feature such as percentage of hints would allow us to better com-
pare the level of scaffolding in terms of hints across problems of varying complexity or
solution length. In our case, we normalized the number of hints by using the maximum
number of hints a student may get for a particular problem which happens when the
student responds entirely incorrectly to every single hint from the computer tutor. We
can infer the largest number of helpful moves, i.e. hints, from our dialogue management
component a priori.
Table 1 provides a list of the most important features in each category. For reference, we

mined a total of 43 features from 1200 units of dialogue which led to 43 × 1200 = 51600
measurements. Our unit of dialogue analysis was a single problem in a training session.
Because the training session consisted of 8 problems and we collected 150 sessions from
150 students we ended up with 8 × 150 = 1200 dialogue units.
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Table 1 Statistics of the dialogue corpus

Category Features

Time-on-task total_time: the time length of the dialogue in minutes

features avg_time_per_turn: the average length of a student turn in minutes

Generation dialogue_size: total length of the student dialogue (#words, excl. punctuation)

features avg_dialogue_size_per_turn (#words, no punctuation)

dialogue_length_div_voc: dialogue_size divided by student’s vocabulary size

#chunks: total number of syntactic constituents or chunks

#sentences: total number of sentences

content_vocSize: the vocabulary size of content words

non_content_vocSize: the vocabulary size of non-content words

vocSize: total vocabulary size

%physicsTerms: percentage of physics related terms out of all the words used

%longWords: percentage of long words out of those used

%puctuation:percentage of punctuation out of all tokens used

%articles: percentage of articles such as an or the out of all the words used

%pronouns: # of non-self-reference pronouns (you, they) out of all words

%self-references: # of self-reference pronouns (me or we) out of all words

totalIC: total Information Content of the dialogue

totalIC_per_word

positiveness: text positiveness computed based on SentiWordNet

negativeness: text negativeness

Scaffolding #turns: total number of student’s turns

features #normalized total number of student turns

#c_turns: number of student turns classified as contributions (no questions)

%pos_fb: percentage of turns for which student received positive feedback

%neg_fb: percentage of turns for which student received negative feedback

pos_div_pos+neg: positive feedback divided by (positive+negative) feedback

#shownHints: total number of shown hints

#shownPrompts: total number of shown prompts, a type of hints

#shownPumps: total number of shown pumps, a type of hints

The data
As already stated, we conducted our research on log-files collected from an experiment
with DeepTutor (Rus et al. 2013). An important aspect of the data we use is the fact that it
was collected from system-student interactions outside of the lab. The data was collected
during a multi-session, online, after-school experiment (see Fig. 3) in which students
interacted with DeepTutor over a period of 5 weeks (one-hour of training per week plus
pre- and post-tests). The pre-test and post-test were taken over the web during school
hours, under the strict supervision of a teacher. All training sessions were unsupervised
as the student chose the type of device (computer, tablet, smartphone), the place (home,
library), and time (after-school during week days or during the week-end) to access Deep-
Tutor. This was possible because DeepTutor is a fully-online conversational ITS which
can be accessed using a browser from any device with an Internet connection.
Students were encouraged to finish each training session in one sitting. While many did

so, some others have finished the training sessions in multiple sittings, spanning several
days in a week. We only included in our analyses here students who finished all ses-
sions (all five sessions of the experiment) and did so as instructed, i.e. they finished each
session in one sitting. A cohort of 150 students finished everything as instructed out of
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Fig. 3 The Experiment Design The experiment from which we collected data included five sessions: one
pre-test session (supervised by teachers), 3 training sessions (fully-online, unsupervised, anytime/anywhere),
one post-test session (supervised by teachers). After each training session, student took a short post-test
(unsupervised) to measure immediate learning gains

the 365 students who took the pre-test. Each training week about 225 students accessed
the system on average. The participants were randomly assigned to one of two condi-
tions mentioned earlier: Micro-Adaptive-only (n = 70) and Fully-adaptive (n = 80). We
only analyzed in this article dialogue corresponding to the first session of training, which
focused on the topic of force-and-motion (Newton’s first and second law), because it was
closest to the pre-test. Table 2 shows summary statistics on this data.

Experiments and results
Our goal was to understand how various characteristics associated with dialogue units
corresponding to instructional tasks in a session relate to students’ prior knowledge as
measured by the pre-test, which is deemed as an accurate estimate of students’ prior
knowledge level. Our first step towards this goal was to do a feature analysis which is
described next.

Table 2 Statistics of the dialogue corpus

Condition # of complete dialogues # of dialogue turns #Sentences

Interactive 80 4587 5102

Adaptive 70 3604 4154

Total 150 8191 9256
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Feature analysis

After acquiring all the features for the sub-dialogues corresponding to individual prob-
lems our first step was to identify the features whose values best correlate with the
pre-test scores. We considered both the entire pre-test (an extended version of Force
Concept Inventory; (Hestenes et al. 1992)), but also the portion of the pre-test, which
we call pre-test-FM, containing questions directly related to the topic of force-and-
motion (FM) training session, i.e. the first training session in our experiment which
is our focus as explained earlier. The overall pre-test can be seen as assessing stu-
dents’ overall knowledge with respect to Newtonian Physics, while pre-test-FM is the
portion of the pre-test that is directly related to the topic covered during the first week
of training, force-and-motion, which basically targeted Newton’s first and second laws.
Table 3 shows correlations of features with the pre-test scores for the micro-adaptive-only
condition.
From Table 3 one can see that with some exceptions for problem 5, the time length (ft1),

the total number of sentences (fg7), the number of turns (fs1), and the number of hints
(fs11) and prompts shown (fs12) have negative correlations with the pre-test scores, while
the average word-length of a turn (fg2) and the percentage of turns receiving positive
feedback (fs7) have positive correlations. These findings confirm similar findings from
previous studies (VanLehn et al. 2007; Stefanescu et al. 2014). Interestingly enough, the
number of sentences students produce seem to be less and less correlated with the pre-test
scores as the students advance through the training session.
Correlations for the fully adaptive condition were somehow different due to the fact

that there was macro-adaptation involved; that is, the set of tasks were selected differently
compared to the micro-adaptive-only condition. We show the best correlated features
for the high-knowledge students, for which we had the most data, in Table 4. Two new
features, compared to the features in Table 3, seem to be specific for this group in the
fully-adaptive condition: fg15 (percent of articles such as an and the) and fg16 (percent of
pronouns that are not references such as you and they).

Table 3 Correlations values with pre-test (top) and pre-test-FM (bottom) for the most interesting
features on each of the 8 problems in the micro-adaptive-only condition

1 2 3 4 5 6 7 8

ft1 –0.36 –0.408 –0.141 –0.176 –0.225 –0.136 –0.254 –0.181

–0.408 –0.333 –0.162 –0.182 –0.256 –0.225 –0.25 –0.219

fg2 0.344 0.262 0.242 0.202 0.213 0.230 0.321 0.236

0.358 0.221 0.254 0.183 0.157 0.125 0.267 0.216

fg7 –0.423 –0.403 –0.303 –0.295 –0.35 –0.245 –0.283 –0.225

–0.433 –0.293 –0.268 –0.296 –0.305 –0.258 –0.29 –0.228

fs1 –0.448 –0.444 –0.333 –0.308 –0.34 –0.36 –0.361 –0.276

–0.473 –0.334 –0.305 –0.295 –0.278 –0.351 –0.331 –0.254

fs7 0.458 0.368 0.193 0.360 0.254 0.208 0.311 0.264

0.458 0.297 0.122 0.386 0.206 0.168 0.251 0.23

fs11 –0.424 –0.425 –0.215 –0.291 –0.284 –0.326 –0.415 –0.326

–0.464 -0.314 -0.248 –0.318 –0.223 –0.317 –0.393 –0.29

fs12 –0.404 –0.386 –0.295 –0.352 –0.28 –0.337 –0.194 –0.2

–0.385 –0.284 –0.225 –0.310 –0.219 –0.304 –0.158 –0.208

Rows correspond to features and columns to problems
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Table 4 Correlations values with pre-test (top) and pre-test-FM (bottom) for the most interesting
features on each of the 8 problems in the fully-adaptive condition – the high-knowledge group of
students

1 2 3 4 5 6 7 8

fg2 0.144 0.428 0.502 0.652 0.557 0.546 0.367 0.314

0.193 0.428 0.455 0.646 0.559 0.551 0.224 0.385

fg7 –0.227 –0.604 –0.660 –0.540 –0.357 –0.600 –0.194 –0.254

–0.482 –0.664 –0.609 –0.545 –0.409 –0.678 0.023 –0.208

fg15 0.181 0.492 0.493 0.443 0.581 0.474 0.588 0.730

0.002 0.393 0.524 0.350 0.648 0.484 0.614 0.636

fg16 –0.291 –0.329 –0.508 –0.551 –0.528 –0.513 –0.144 –0.754

–0.446 –0.201 –0.356 –0.332 –0.441 –0.389 –0.139 –0.576

fs1 –0.252 –0.507 –0.668 –0.559 –0.405 –0.603 –0.228 –0.369

-0.475 –0.629 –0.626 –0.578 –0.438 –0.656 0.029 –0.470

fs11 –0.056 –0.568 –0.569 –0.693 –0.328 –0.530 –0.127 –0.339

–0.335 –0.63 –0.549 –0.629 –0.303 –0.656 0.078 –0.469

fs12 –0.254 –0.343 –0.602 –0.486 –0.352 –0.409 –0.210 –0.159

–0.504 –0.534 –0.510 –0.512 –0.087 –0.403 0.013 –0.284

Rows correspond to features and columns to problems

Predicting students’ knowledge level

To predict students’ knowledge levels, we generated regression models from subsets
of consecutive problems in a training session in order to understand after how many
problems the prediction of students’ knowledge level is best. The models were gen-
erated not only based on all the available features, but also on subsets of features
corresponding to the three major categories of features: Time-on-Task, Generative, and
Pedagogy/Scaffolding. All the models were generated using the Backward method in
SPSS, so as to be able to find the r value corresponding to the highest adjusted r square
value and the lowest degrees of freedom (fewest predictors). It is important to note that
in the fully-adaptive condition the models were generated separately for the four groups
of students corresponding to the four knowledge levels.
The results in Tables 5 and 6 indicate that after only four problems, the explained vari-

ance is comparable to the best case, which is obtained using the first 6 out of the eight
tasks. Scaffolding-related features as a group seem to do better, which is very informa-
tive and expected in a tutorial context as opposed to non-instructional, general dialogues.
Tables 7 and 8 present results for dialogues from the fully-adaptive condition. Similar to
the results obtained from the micro-adaptive-only condition, the scaffolding features as

Table 5 r (top) and adjusted r square (bottom) values for cumulative sub-dialogues in the
micro-adaptive condition and the pre-test

1 1–2 1–3 1–4 1–5 1–6 1–7 1–8

All 0.735 .706 .726 .819 .814 .878 .860 .871

0.451 .426 .458 .600 .589 .693 .669 .678

Time 0.462 .618 .654 .692 .706 .712 .733 .709

0.193 .358 .406 .436 .465 .481 .507 .483

Gen 0.606 .616 .668 .679 .724 .739 .763 .762

0.265 .329 .374 .408 .456 .495 .528 .520

Scaf 0.593 .587 .599 .647 .603 .615 .603 .607

0.289 .310 .306 .343 .302 .308 .311 .317
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Table 6 r (top) and adjusted r square (bottom) values for cumulative sub-dialogues in the
micro-adaptive-only condition and the pre-test-FM

1 1–2 1–3 1–4 1–5 1–6 1–7 1–8

All 0.725 .677 .713 .840 .791 .878 .857 .861

0.449 .405 .438 .611 .552 .693 .667 .681

Time 0.510 .600 .613 .665 .677 .698 .690 .689

0.260 .335 .360 .404 .422 .452 .448 .454

Gen 0.606 .578 .616 .685 .698 .722 .750 .745

0.265 .279 .338 .392 .421 .459 .492 .497

Scaf 0.561 .569 .573 .625 .586 .578 .576 .577

0.259 .278 .273 .322 .249 .279 .287 .288

a group do best. Interestingly, in this case after only two problems the correlation coeffi-
cient r is quite high. In a way, this is a validation that the problem selection strategy does
a good job at selecting most appropriate problems for each of the four knowledge groups.
We know that the problems were appropriately selected because the learning gains for
students in the macro-adaptive condition were significantly higher than for students in
the micro-adaptive-only condition (the focus of another paper).

Conclusions and future work
We explored in this article models to predict students’ prior knowledge based on fea-
tures characterizing the dialogue-based interaction between a computer-based tutor and
a learner. This work was part of our greater goal to move towards non-intrusive assess-
ment methods that would allow learners to focus on the major task, e.g. solving problems
or playing a game, and improve their learning experience by eliminating test axieties and
tiring effects.
Our results are quite promising with respect to moving towards a world in which learn-

ers focus on instruction with no explicit testing. Indeed, our linear regression models
based on a number of interaction features yielded in the best cases an r = 0.949 and
adjusted r-square = 0.833. This best result was obtained when developing prediction
models using the data from the fully-adaptive ITS. This is expected because in the
fully-adaptive case the models were more specialized, i.e. we derived prediction models
for each of the four student knowledge levels: low knowledge, medium-low knowledge,
medium-high knowledge, and high-knowledge. It should be noted that the best results
for the prediction model derived from the micro-adaptive-only ITS data were very good
too: r = 0.878 and r-square = 0.693. Furthemore, scaffolding features seemed to be the

Table 7 r (top) and adjusted r square (bottom) values for cumulative sub-dialogues in the
fully-adaptive condition and the pre-test

1 1–2 1–3 1–4 1–5 1–6 1–7 1–8

All .820 .910 .949 .930 .922 .935 .936 .924

.589 .764 .833 .812 .788 .802 .839 .811

Time .566 .723 .837 .847 .841 .823 .882 .865

.290 .509 .677 .701 .684 .652 .752 .724

Gen .782 .862 .904 .906 .896 .850 .909 .884

.530 .671 .771 .791 .774 .675 .807 .749

Scaf .709 .662 .838 .769 .754 .752 .782 .804

.472 .394 .679 .552 .511 .508 .574 .606
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Table 8 r (top) and adjusted r square (bottom) values for cumulative sub-dialogues in the
fully-adaptive condition and the pre-test-FM

All .811 .862 .865 .856 .896 .878 .889 .875

.562 .638 .667 .639 .696 .663 .716 .633

Time .441 .622 .739 .738 .725 .689 .778 .707

.158 .349 .510 .510 .489 .434 .560 .452

Gen .699 .808 .837 .810 .792 .781 .849 .811

.431 .572 .631 .592 .556 .544 .662 .585

Scaf .686 .495 .702 .663 .657 .668 .705 .661

.446 .211 .444 .355 .357 .374 .432 .394

most predictive as a group, as somehow anticipated in a tutorial context, followed by
content-generation features.
Our findings have two important implications for the future development of ITSs that

would integrate non-intrusive assessment methods such as the ones proposed in this
article. First, the best models derived from the micro-adaptive-only sessions provide a
better estimate of the accuracy ITS developers should expect for predicting learners’ prior
knowledge level in future ITSs and should be the model to be integrated first in such
future ITSs, despite the fact that these models are less accurate, although pretty accu-
rate for that matter, than the more specialized models derived from the fully-adaptive ITS
data. The reason is obvious: in order to use the fully-adaptive models, the ITS needs to
make a guess or have some a priori measurement of the learners’ knowledge, so that it
can decide which fully-adaptive model to use for a more precise measurement of learners’
knowledge levels based on their performance on the tasks in the tutorial session. How-
ever, giving learners a pre-test in order to infer their knowledge level first defies in a way
the whole purpose of our intended goal: inferring learners’ prior knowledge level from
characteristics of the tutor-learner interaction only, without an explicit pre-test. In the
case when a learner’s knowledge level is known a priori, e.g. from a recent classroom test,
and is available as input to the ITS then the ITS could simply trigger the more specialized
and more accurate prediction model corresponding to the specific learner’s knowledge
level without the need to use the micro-adaptive-only prediction model.
Second, the fully-adaptive models’ high accuracy can be interpreted as validating the set

of selected instructional tasks, i.e. Physics problems in our case, in the tutorial session.
Task selection is a critical step in a computer tutor because it has major implications for
the effectiveness of the system. If the tasks are too easy, then the learner is bored leading
to her disengagement while if the tasks were too difficult the learner would be frustrated
and, again, disengaged, to the point that in some cases shemight even quit using the tutor-
ing system. Indeed, the tasks should be at the right level of difficulty, not too easy and not
too difficult but just right, in order to stimulate the learner and keep her engaged in the
learning process throughout the whole tutorial session. That is, the role of the intelligent
tutoring system is to keep the learner in the zone of proximal development (Vygotsky
1978) through an appropriate set of tasks with respect to the learner’s current knowledge
state. In this sense, having components that could monitor the quality of the selected
task would thus be very beneficial. It should be noted that because the task selection
step is an upstream step in the tutorial process any bad decision regarding task selection
would propagate to later, downstream tutoring stages. To illustrate our point, imagine an
ITS with a perfect micro-adaptive module which would provide ideal scaffolding to each
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learner working on a particular Physics problem. Even if the scaffolding within a task
were optimal, learners would not learn much if the Physics problem were way below their
knowledge level. Not only that but, as mentioned earlier, the learner would feel bored and
in the worst case scenario she might decide to quit using the tutoring system. Our recom-
mendation is that future developers of ITSs should implement both types of models: the
micro-adaptive-only models are needed to get a sense of learners’ knowledge level with-
out an explicit pre-test while the fully-adaptivemodels are needed tomonitor and validate
learners’ knowledge level and the quality of the instructional tasks throughout the entire
tutorial session.
We plan to further explore the topic of assessing students’ prior knowledge from

dialogues by investigating affect-related features as well as by using other prediction
mechanisms such as classifiers to predicting categorical knowledge levels. Furthermore,
we plan to study how similar models can predict post-test scores. We are aware that stu-
dents’ knowledge levels evolve during training, assuming they learn, and therefore there
are limitations to our methodology. We do plan to explore in the future ways to infer
students’ knowledge levels throughout a session, e.g. by having a human expert read the
transcripts of a tutoring session.
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