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Abstract

Interests towards teaching programming skills have risen recently in the realm of
computing education. Learning how to program not only enables learners to develop
computing applications, but it can also enhance learners’ computational thinking (CT)
practice. CT refers to learners’ ability to approach ill-structured tasks systematically based
on algorithmic thinking in computing. Along with growing academic interests towards
CT in recent studies, researchers have emphasized the role of teaching programming in
facilitating learners’ problem-solving skills. Emerging OERs have expanded learners’
opportunities to engage in hands-on programming exercises; yet a challenge still
remains as to how learners’ programming exercises can be tailored to accommodate
individual differences in terms of learners’ digital literacy skills. There is still a lack of
in-depth discussions on how to support learners’ personalized learning experiences
during programming exercises associated with CT. This study hence proposes a
conceptual framework that seeks to consider how to promotelearners’ personalized
learning experiences and enhance their CT skills in OERs. Through extensive
reviewing of literature, this study provides several implications for further research.

Keywords: Open Educational Resource, Computational Thinking, Personalization,
Learning Analytics

Growing interests towards twenty-first-century skills have brought scholars’ attention

to the further role of smart learning environments in improving students’ digital liter-

acies. Learners’ digital literacies span beyond becoming familiar with particular tech-

nologies, and encompass comprehensive skills to implement and apply technologies in

learners’ problem-solving contexts (Griffin & Care, 2014), that are closely associated

with learners’ computational thinking (CT). CT refers to a way of problem-solving, in-

cluding systematic analyses and implementations (Shute, Sun, & Asbell-Clarke, 2017).

CT aims to enhance learners’ potentials in solving ill-structured problems by enabling

learners to go through a series of computing executions based on computational logic.

CT is not just about computer skills, it is a set of thinking skills—such as algorithmic,

design, and mathematical thinking that are vital to solving problems using a computer

(Lee et al., 2011, p.32).

This study focused on learners’ programming exercises in developing personalized

OER design framework for learners’ CT development. While we highlight that CT goes

beyond mere acquisition of programming skills (Shute et al., 2017), it is still useful to
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utilize programming exercises as a way to improve CT competencies (Hoppe & Werne-

burg, 2019; Lye & Koh, 2014). Engaging learners in programming exercises not only

improve their skills in a specific programming language, it could enhance their CT

competencies. CT is not a single entity, but a multifaceted concept—comprising mul-

tiple abilities that are needed when applying skills for computing-application develop-

ments. Attaining a sense of CT requires learners’ thorough understanding of a

particular problem context, as well as programming languages and algorithms. Prior re-

search indicated that the first objective of CT is to learn how to solve a real-world issue

by constructing computing applications (Aho, 2012). Constructionists have concen-

trated on leveraging learners’ CT through hands-on programming exercises that con-

tain genuine and complicated problem-solving tasks.

Many online platforms as open educational resources (OERs) have emerged to teach

CT, —ranging from Massive Open Online Course (MOOC) (Bonk, Lee, Reeves, &

Reynolds, 2015) to gamified coding platforms such as CodeCombat (Saines, Erickson, &

Winter, 2013), Hour of Code (Wilson, 2014), and ctGameStudio (Werneburg, Manske,

& Hoppe, 2018). These OERs have widened individuals’ learning opportunities for com-

puter programming. The emergence of visual programming and smart-computing tech-

nologies empowered learners to easily apply their programming skills to their daily

lives. Compared to traditional face-to-face environments, which are mostly instructor-

led within classroom-like settings, online OER platforms enable learners to practice

programming languages without constraints on time and location. Such OERs on com-

puting education have become potential environments where learners can choose edu-

cational materials that are tailored to their educational needs.

OERs on computing education have evolved to promote students’ deeper understand-

ing of CT via highly-interactive programming exercises. A collection of block-based

programming platforms enabled learners to deeply engage with manipulating program-

ming language (Resnick et al., 2009; Wilkerson-Jerde, Wagh, & Wilensky, 2015).

Agent-based and gameful learning contexts in programming platforms (Werneburg

et al., 2018; Wilensky, 1999) also contributed to enhancing students’ situated learning

in CT. Others allowed learners to engage in how their programming exercises can be

connected with other disciplines (e.g., Science, Technology, Engineering, and Mathematics

(STEM)) (Sengupta & Farris, 2012; Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013).

However, despite increasing developments of OERs on computing education, there are

still challenges to overcome. While OER platforms enable learners to be pervasively in-

volved in programming exercises online, a way to systematically enhance learners’ CT

through programming exercises is not well understood. When considering the multifa-

ceted and complex nature of CT, additional support to personalize learners’ experiences is

essential. Conceptualizing a framework to lay out how learners’ CT is assessed and pro-

moted provides a better understanding of how to further design and develop personalized

OERs with programming exercises. With this in mind, this study explores how OERs can

be designed to support learners’ CT improvements through personalized instruction.

Purpose
This study proposes a conceptual framework that illustrates how to support learners’ CT

developments through personalized designs of OERs. This study investigated how OERs

can provide learners with personalized learning experiences in programming exercises.
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This study proposes a learning-analytics approach to integrating personalization within an

OER framework. Based on extensive literature reviews, this study explored latent

attributes of CT and illustrated how learning analytics (LA) can enhance learners’ CT in

OERs. This study has an overarching research question as follows: What is a conceptual

framework for executing personalized OERs to support learners’ CT improvement?

Underlying foundations
Computational thinking

Essential elements of computational thinking

As early constructionist scholars revealed the impact of programming exercises in edu-

cation (Harel & Papert, 1991; Kafai, 2006; Kafai & Burke, 2013; Papert & Harel, 1991),

researchers have continuously investigated how learners’ programming exercises would

promote learners’ CT. After Wing (2006) came up with the term computational thinking,

scholars have explored how programming exercises can enhance learners’ CT. Initially,

programming exercises were considered to be learning activities that only focus on

building computing applications, but the concept of CT has expanded such a notion.

Generally, CT is described as learners’ capabilities to solve genuine and complex

problems using a way of thinking as either computer or computer scientist approach. CT

is not limited to logical actions for computer programming but broadly describes the

approach to systematically perform their problem-solving skills toward various challenges.

There have been scholarly discussions surrounding the definition of CT. According to

Brennan and Resnick (2012), CT is associated with the essence of programming skills.

Brennan and Resnick stated several CT concepts: (a) sequence, (b) loops, (c) parallelism,

(d) events, (e) conditionals, (f) operators, and (g) data. Both sequence and loop stand for

learners’ procedures to develop programming codes. Parallelism addresses the design of

multi-processors of information. Events refer to the code development of how computing

applications detect external inputs by users. Conditionals are a set of thresholds to operate

the request based on different computing circumstances. Operators are a set of computer

codes that are represented by numerical signs. Lastly, data stands for information that

requires additional decoding. Shute et al. (2017) explained that CT is a way to resolve

complicated problems strategically. Their review addressed a total of six CT facets:

(1) decomposition, (2) abstraction, (3) algorithms, (4) debugging, (5) iteration, and

(6) generalization. Both decomposition and abstraction include patterning a problem as

manageable chunks and then extracting features. Algorithms represent learners’ logical

reasonings to approach a confined problem. Debugging and iteration are the steps to

evaluate their works to find, correct, and refine the errors when implementing a solution.

Lastly, generalization is an action seeking opportunities to transfer the solution to broader

contexts. Compared to Brennan and Resnick (2012)’s view, their classification takes into

consideration CT features that are related to generic problem-solving. Four iterative

actions of students which can improve CT that are commonly discussed by researchers

are problem decomposition, reformulation, implementations, and evaluations.

Learning environments to enhance computational thinking

A theoretical notion of CT has started from understanding learners’ programming

actions when building a computing application (Brennan & Resnick, 2012). In order to
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improve CT, researchers highlighted the importance of identifying an ill-defined problem

(Wing, 2011), formulating a prototype (Settle et al., 2012), and evaluating its functionality

(Ota, Morimoto, & Kato, 2016) during programming exercises. Through iterative

evaluations in programming exercises, learners can gradually acquire a sense of CT.

Such notions are reflected in constructionist computing platforms. Ever since the

introduction of LOGO (Papert & Harel, 1991), NetLogo (Wilensky, 1999) and many

other OERs on CT education have been introduced to promote learners’ CT competen-

cies systematically. The key objective of these OERs was to assist students in identifying

the logic of computational processing. These platforms were designed and developed to

better support students’ intuitive understandings of CT. One of the ways to support

such understandings is through visual representations. For instance, Scratch (Resnick

et al., 2009), AgentSheets (Repenning & Sumner, 1995), and ViMap (Sengupta & Farris,

2012) have utilized the blocks of functions as visual representations to help students

understand how computational logics are structured. Oftentimes, these block-based

programming settings are integrated into a gamified learning environment. For ex-

ample, Werneburg et al. (2018) provided guided discovery for learners in their environ-

ment where learners are guided and prompted to make decisions on which

programming codes should be implemented to solve their in-game challenges.

Beyond current computer-aided and unplugged practices (Bell, Alexander, Freeman, &

Grimley, 2009; Wohl, Porter, & Clinch, 2015), several computerized OER platforms also

expanded opportunities to engage the public in computer programming. MIT App

Inventor aimed to promote novice students’ awareness of CT when building a computer

application. Using Scratch, the system encourages learners to experience the self-

development of mobile software via their hands-on visual programming practices

(Abelson, Wolber, Morelli, Gray, & Uche, 2012). The platform Hour of Code by Code.org

has offered online interactive modules for programming practices. This online platform

was designed for K-12 learners to familiarize themselves with coding practices and

practice with gameful online exercises. Similarly, in France, a group of researchers

initiated their national project Class’Codes, which offers multiple web-interactive

programming modules (Informatics Europe, 2017). This self-paced online environment is

specialized to offer responsive interfaces of programming exercises (e.g., robotics, network

system, information processing, and creative programming).

Despite the large expansion of OERs, several challenges still exist in building OERs to

enhance learners’ CT. First, the number of guidelines on how to design programming

exercises in association with CT is still limited. Although numerous OERs have

integrated learners’ programming exercises to foster their CT, conceptualizations of OERs

to layout associations between programming exercises and CT competencies are still

lacking. Second, while various OERs have been designed for self-paced learning, only a

limited number of studies considered providing a personalized learning experience that

addresses the individual differences of learners during the programming exercises.

Because novice learners in computing OERs are likely to experience many challenges, it is

necessary to provide in-situ scaffolding to support their success in programming exercises

(Sengupta et al., 2013). Hence, personalized learning support is necessary to provide

personalized instruction tailored to individual students’ progression. However, a lack of

design inquiries in prior studies calls for further conceptualizations on how to deliver

personalized support to learners, as a lens for formative assessment.
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Formative assessments and adaptations of teaching computational thinking

Learners’ challenges in CT have been a major issue in computing education. Re-

searchers consistently raised a question on how to support learners’ acquisition of CTs

throughout programming exercises (Lye & Koh, 2014). Researchers have explored ways

to measure learners’ CT competency developments during programming exercises.

Prior smart learning environments mostly aimed to promote learners’ interactive pro-

gramming exercises; however, their assessments failed to observe learners’ in-situ and

meaningful improvements of CT in programming exercises (Grover, Cooper, & Pea,

2014; Lee et al., 2012).

Relevant to this claim, researchers have explored ways to develop and implement as-

sessments for CT competencies. Hosseini (2017) attempted to evaluate learners’ pro-

gramming behaviors by using the evidence-centered design (ECD) framework. The

ECD framework is a conceptual model that illustrates how learners’ knowledge, skills,

and abilities (KSA) appear in correspondence to major task features (Mislevy & Haertel,

2006). Under this framework, this study classified key observable variables that are re-

lated to learners’ programming skills: prior programming experiences, aptitude in

mathematics and sciences, and intrinsic motivation and comfort level. The study sug-

gested several programming task products: code compatibility, the correctness of the

program, the number of programming code lines, number of learners’ requests, time-

duration of the code writing, and the basic programming concepts.

Researchers have assessed computational thinking by using diverse methods observ-

ing the evidence of CT-associated behaviors. For example, Koh, Basawapatna, Nicker-

son, and Repenning (2014) developed the computational-thinking pattern analysis

(CTPA)—using the latent semantic analysis to detect computational thinking patterns

within game design contexts. CTPA enables researchers to find nine computational

thinking patterns: user control, generation, absorption, collision, transportation, push,

pull, diffusion, and hill-climbing by creating a graph. Wilson, Hainey, and Connolly

(2012) refined and used a coding scheme to assess students’ CT when using Scratch.

The coding scheme consists of three main categories: programming concepts, code

organization, and designing for usability.

In emerging Educational Data Mining (EDM) and LA research, there is research

contributing to the assessments of students’ CT. Using the NetLogo environment,

Blikstein (2011) explored multiple indicators of students’ CT-related variables: Code

size, the time between compilations, and errors. Qualitative observations of this

study found the feasibility of each variable to interpret students’ CT-related actions.

Werneburg et al. (2018) attempted to observe students’ programming action pat-

terns via multiple measures (e.g., runs, changes per run, creates, and consecutive

changes per create). Basu, Kinnebrew, and Biswas (2014) introduced vector-

distance model-accuracy metrics to compare the similarity between students’ and

an expert’s model. This computational modeling was driven by a bag-of-words

computational algorithm under natural language processing (NLP). Brennan and

Resnick (2012) used the data-capturing toolkit Scrape, which was designed to as-

sess learners’ acquisition of CT when using Scratch. Based on their definition of

the key CT skills, they supported tagging each learners’ coding blocks that repre-

sented their records of CT concepts when using Scratch. This application visual-

ized how learners’ programming actions occurred when compiling coding blocks in
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a certain way. The heatmap of the visualization enabled researchers to indicate the

frequencies of how learners used specific types of coding blocks that implicate

their fluency of programming skills. Wiggins et al. (2015) and Wiggins, Grafsgaard,

Boyer, Wiebe, and Lester (2017) introduced the JavaTutor, which is an intelligent

tutoring system to present a personalized computing education platform that

mostly considers students’ cognitive and affective states. The platform features

data-driven adaptations of tasks tailored to students’ contextual needs. This system

adopts the concept of multimodal LA driven by following data collection: gestures,

interaction logs, physiological responses, and facial expressions.

Although prior studies have increasingly highlighted CT assessments in many OERs,

those approaches rarely suggested how to provide learners with personalized environ-

ments associated with their CT competency level. Aligned with this challenge, there are

further questions that need be explored: (1) How does an OER observe learners’ CT de-

velopments without interrupting their flow in programming exercises?; (2) What OER

features could support learners’ CT developments in personalized instruction?; and (3)

How does an OER provide personalized learning experiences based on their CT im-

provement? These questions coherently emphasize how OERs need to be designed to

personalize and support learners’ meaningful experiences that are associated with CT.

OERs and personalization

Flexible provisions of OER

OER is defined as “the open provision of educational resources, enabled by information

and communication technologies, for consultation, use, and adaptation by a community

of users for non-commercial purposes.” (UNESCO, 2002, p.24). In other words, OER is

educational materials distributed in an open format that can be freely accessed by any-

one. Researchers have proven the effectiveness of OER in teaching and learning. One

representative benefit of OER is its flexibility (Geser, 2007; Hylén, 2006). OER encour-

ages instructors and learners to choose teaching and learning materials based on their

preferences and needs. Instructors can access the best possible teaching resources and

have flexibility in using those materials (Blomgren, 2018; Hylén, 2006). Learners can se-

lect individual units or courses of the topic by reflecting on their needs and level (Yuan,

MacNeill, & Kraan, 2008). Thus, the effective uses of OER support the practice of open

learning principle which suggests that “learning provision should be flexible so that

learners can increasingly choose where, when, what, and how they learn as well as the

pace at which they will learn” (Butcher, 2015, p. 6).

Currently, the flexibility of OER enabled researchers and educators to utilize OER to teach

CT. MOOC, which is one of the most popular forms of OER, has been used as a tool/

method for teaching and learning computational thinking (e.g. Gao, 2016; Mullen et al.,

2017). Mullen et al. (2017) designed the High-Performance Computing (HPC) course as a

MOOC to assist learner’s personalized learning. They designed a self-paced online course

that allowed learners to learn HPC focusing on their target system and workplace by adapt-

ing MOOC approach in designing an HPC course. Gao (2016) designed a CT course for

non-computer majoring students with MOOCs. In the MOOC, this study provided suitable

teaching to students from different academic backgrounds with different computing levels.

This study adapted a flipped-classroom approach with its MOOC. Non-computer majored
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students studied about the topic before class and then interacted with their instructor dur-

ing the class time. These studies utilized the flexibility of OER to support learner’s personal-

ized learning in teaching CT. Although OERs in MOOC environments occurred associated

with programming exercises, they were limited in proposing how feasible adoptions can be

implemented to purposefully enhance learners’ CT skills.

Personalized learning

Recent smart learning environments have proposed their future role as personalized

learning support. Both highly-interactive and technology-enriched learning environment

contexts enable educators to seek various ways to execute personalized learning. Although

personalized learning has received a considerable amount of attention from educators and

researchers (Butoianu, Vidal, Verbert, Duval, & Broisin, 2010; Song, Wong, & Looi, 2012),

there has been no widely accepted definition of it. The first use of the term “personalized”

could be seen in the Personalized System of Instruction (PSI) proposed by Fred Keller and

his colleagues for college learners in 1962 (Keefe, 2007). The U.S. Department of Educa-

tion (2017) recently defined personalized learning as “instruction in which the pace of

learning and the instructional approach are optimized for the needs of each learner” (p.

9). Bill and Melinda Gates Foundation (2014) explained that personalized learning has

four characteristics: competency-based education, flexible learning environments, per-

sonal learning plans, and learner profiles. The purpose of personalized learning is to “build

a ‘profile’ of each student’s strength, weakness, and pace of learning” (Educause Learning

Initiative (ELI), 2015).

The rapid development of information communication technology (ICT) has made

personalized learning feasible (Dawson, Heathcote, & Poole, 2010). Specifically, the de-

velopments of both intelligent web-based learning systems (Chen, 2008) and e-learning

systems (Chen, Lee, & Chen, 2005) have contributed to supporting learners’ personal-

ized learning in online learning environments. Brusilovsky (1999) recommended that

personalized learning systems have mechanisms of adaptive learning based on the fol-

lowing rationales: a learning system should offer an optimal learning path for individual

learners with different knowledge and learning abilities, but traditional web-based

learning systems provide learning materials disregarding the learners’ needs. A recent

systematic review study on technology-enhanced personalized learning found that per-

sonalized data sources including learners’ preferences, learner profiles, learning achieve-

ments, and learning logs were the main parameters to support personalized learning

(Xie, Chu, Hwang, & Wang, 2019). This mechanism suggested how personalized learn-

ing can be integrated and implemented in the context of OERs.

Associated with learners’ CT, designing personalized online learning environments is

necessary to support learners’ meaningful practices when learning programming. Previ-

ous studies confirmed that novice learners are likely to be overwhelmed by highly com-

plex structures of programming codes (Eckerdal, 2009). Reading and writing

programming codes demands learners’ prerequisite identifications of both program-

ming functions and grammars to be implemented. Unless learners attain mindful

awareness of programming logic, they could not clearly understand basic concepts and

their relationships among codes (Chookaew, Panjaburee, Wanichsan, & Laosinchai,

2014). In addition, high variations of learners’ familiarity and prior knowledge level in

Moon et al. Smart Learning Environments             (2020) 7:6 Page 7 of 19



computer programming can also be a determinant that personalized learning modules

should be delivered.

Several case studies demonstrated the implementation examples of personalized on-

line learning environments. Chookaew et al. (2014) proposed a personalized e-learning

environment based on learning problems, learning styles, and performance levels. In

their personalized e-learning environment, the concept-effect model (Panjaburee,

Hwang, Triampo, & Shih, 2010) was used to identify learners’ learning problems. The

Index of Learning Style (ILS) (Felder & Solomon, 1988) questionnaire was conducted

to identify each student’s learning style. Based on the index score, they categorized

learners’ groups (high-, middle-, and low-performance groups) depending on the cor-

rectness of the learners’ responses (Yan, Hara, Nakano, Kazuma, & He, 2016). However,

precedent research on personalized learning was still limited in explaining how

learners’ behavior metrics can be processed, analyzed, and represented in correspond-

ence with learners’ diverse needs and learning paths in programming contexts.

Role of LA to support personalized learning

Another area that has impacted personalized learning is LA. Because of their capabil-

ities to accommodate individual student needs, adaptive learning systems are essential

in bringing personalized learning. In his discussion of future for adaptive learning sys-

tems, Essa (2016) suggests seven characteristics:

– Cost-effective to build, maintain, and support;

– Accurate in its assessment of learner characteristics and learner knowledge state;

– Efficient in carrying out decisions and recommendations, such as identifying optimal

instructional resources and activities for each learner at each moment in time;

– Able to scale to support hundreds of thousands, if not millions, for simultaneous

users;

– Flexible in being able to integrate with enterprise systems based on open standards;

– Generalizable to domains beyond STEM disciplines

– Able to support transparent open learner models to encourage learners to take

greater control and responsibility for their own learning (p. 1).

LA plays a crucial role in bringing these requirements into reality. With the advance-

ment of machine learning techniques and computing power to process big data, LA en-

abled researchers and educators to develop and create more effective adaptive learning

systems.

Since the emerging of LA, researchers have been utilizing LA for their studies on de-

signing and developing adaptive learning systems. First, researchers utilized LA to

evaluate the effectiveness of adaptive learning systems. For instance, Liu et al. (2017)

have utilized LA to understand pharmacy learners’ usage patterns for learning adaptive

system for their chemistry and biology modules and discovered that affective factor

such as motivation can be indicative of student success, and further highlighted the im-

portance of alignment between components within the system as well as the role of

visualization of data using LA in understanding user behavior. Similarly, Mojarad, Essa,

Mojarad, and Baker (2018) used LA techniques to evaluate the effectiveness of an
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adaptive learning system called ALEKS (Assessment and Learning in Knowledge

Spaces). They used the propensity score matching technique to conduct quasi-

experiment to remove bias and discovered that adaptive learning system is, in fact,

helpful in terms of learners’ pass/fail rate. As illustrated by the examples, LA enables

identifying and evaluating factors that impact student learning as well as assessing the

overall impact of adaptive learning systems.

Second, researchers and educators have been implementing LA more directly by de-

signing and developing adaptive learning system powered by LA. LA can benefit

learners in a number of ways. Adapting from Ifenthaler and Widanapathirana’s (2014)

categorization, Schumacher and Ifenthaler (2018), lists three benefit types of LA as

summative, real-time, and predictive. Summative benefits refer to understanding

learners in multiple angles such as learning habits, learning paths, and learning goals.

Real-time benefits refer to LA’s capabilities to instantly assess learners and intervene in

learners’ behaviors through feedbacks. Lastly, predictive benefits refer to LA’s capabil-

ities in predicting learner outcomes and providing recommendations based on those

predictions to increase learner success rate.

Because of these benefits, LA can help building more effective adaptive learning sys-

tems. For instance, with their integrated course-adapted student LA framework, Aljo-

hani et al. (2019) created a prototype of a student-centered analytical dashboard that

provides integrated information on learners’ Blackboard usage. The tool would provide

integrated feedback in three forms: statistical feedback, textual feedback, and visual

feedback. The results suggest that providing personalized feedback for enhanced stu-

dent engagement is crucial. On the other hand, Gong and Liu (2019) developed and

implemented a personalized learning system for a blended learning environment that

provided different types of interventions based on LA. The intervention would be a

combination of individual and group interventions, online and offline interventions,

and systematic and human interventions. The analyses on achievement, online learning

behavior, and self-measuring learning engagement suggested that interventions based

on LA could help improve learners’ performance and engagement, especially for risky

learners. Vesin, Mangaroska, and Giannakos (2018) developed a programming tutoring

system called ProTuS that consist of following features: interactive visualizations of

learner activities, personalization options that can provide personalized recommenda-

tions of learning resources for learners and customization options to tailor user inter-

face appearance. In their usability evaluation of LA component of ProTuS, learners

found ProTuS to be useful, particularly the interactive visualization features that can

potentially increase student engagement. However, they also pointed out that inter-

activity could increase the complexity of the system. These examples illustrate how LA

allowed researchers to develop adaptive learning systems that are more effective and ef-

ficient in terms of learner success.

Design framework
Through a literature review of studies on relevant topics (i.e., teaching and assessing

CT, flexible provisions of OER, and personalized design), we conceptualized a personal-

ized OER framework that integrates LA techniques. We distilled key CT competencies

and mapped out how we can measure CT competencies with multiple learning-

analytics-driven measures. This framework was specifically designed for OER contexts
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in online learning environments. This design framework comprises steps to collect,

mine, and analyze learners’ interaction data in an OER system. Following sections ex-

plain how learners’ online profiles are defined, sampled, and processed in the frame-

work. Figure 1 portrays the proposed personalized OER design framework.

Data extractions

In this stage, an OER system specifies the extent of data extractions for collecting

learners’ profiles when computer programming. This framework addresses two types of

learners’ profiles: cognitive profiles and emotional profiles. The cognitive profiles refer

to their mental processing—relating to their CT competencies and related attributes

(cognitive load and prior knowledge), the emotional profiles address learners’ affective

flow. Table 1 is the example matrix that mapped out learners’ profiles, key attributes

and observable variables in the proposed framework.

Cognitive profile

Identifying learners’ cognitive profiles requires systematic implementations of LA mea-

sures. Hence, this framework adopted the evidence-centered design model (ECD) (Mis-

levy & Haertel, 2006). Following the ECD model, we distilled target CT competencies

relating to programming exercises.

CT competencies

– Problem decomposition: If a problem statement in an online learning task is

presented within individual programming exercises, learners are asked to

decompose a target problem to multiple smaller chunks of programming tasks.

Learners are requested to identify the essential features of the problem and then to

Fig. 1 Personalized OER Framework
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propose how individual solutions for smaller problems are interconnected with

performing computing algorithms.

– Abstraction: Abstraction explains learners’ pattern recognitions and developments

when editing programming codes. This competency stands for learners’ capabilities

of conceptualizing programming code designs.

– Automation design and development: After identification of a problem

statement, learners are required to conduct symbolic representations of their

programming codes to simulate automated algorithms.

– Testing and debugging: Testing indicates the executions of initial programming

artifacts. Testing aims to examine unexpected errors during the artifact’s

executions. Based on the results of testing, debugging is conducted. Debugging

is the refinements of previous programming implementations until the data

processing of the artifact successfully runs. Testing focuses on learners’ act of

the evaluation, and debugging is defined as learners’ attempts to modify their

programming structures to be advanced.

Cognitive load and prior knowledge In addition to key CT competencies, other

cognitive attributes can also be considered for data collection: cognitive load and

prior knowledge (skills). Whereas cognitive load indicates students’ either mental

exertions or extraneous loads in their computerized programming tasks, students’

prior knowledge or skills on computer programming estimates how students

already become familiar with their programming environments.

Emotional profile

Emotional states in this framework refer to learners’ engagement and motivation when

using OERs. Analyzing learners’ emotional states is to indicate how learners’ task perse-

verance changes during a series of programming exercise modules. Specifically, an in-

creasing level of learners’ interest indicates their enhancement of mental exertions

during their programming exercises, and frustration is indicative of learners’ decreasing

motivation. For example, Vail, Grafsgaard, Boyer, Wiebe, and Lester (2016) evidenced

how multimodal LA can predict their emotions in an intelligent tutor-based OER. For

emotion classification, this study used multiple multimodal data features: facial expres-

sion, gesture and physical distance from the workstation. Moreover, using a bag-of-

word and latent-semantic indexing models, Colneriĉ and Demsar (2018) proposed the

emotion recognition algorithm that detects key emotional states from verbal

utterances.

Data fusion and processing

In addition to collecting profile information, it is necessary to integrate different types

of data as data fusion. This framework envisions the low-level data fusion that com-

bines all raw data, which has similar epistemological features. In comparison to naïve

data fusions using unsupervised dimensionality-reduction techniques, we already define

major cognitive and emotional profiles and associated data features. Hence, we do not

run data explorations to confirm a collection of similar data features. Instead, for data

fusion, this step normalizes all raw data from multiple data channels with the same
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profile category. Benchmarked by the idea of the JDL data-fusion classification model

(Steinberg, Bowman, & White, 1999), this framework stores the fused data in database

management systems that can be retrieved for further inferential data mining, as well

as module adaptations. Table 1 shows how the proposed framework includes multiple

data channels that represents observable variables associated target attributes of the

competency assessment.

Inferential data mining

Inferential data mining investigates how collected learners’ profile data is interpreted to

provide future learning modules. This step needs automatic decision-making based on

learners’ profile data (i.e., cognitive and emotional profiles) depending on the analytics’

purposes. First, sequential data analytics (SDA) (e.g., sequential analysis and sequential

pattern mining) can be implemented to measure how students’ programming actions

resemble those of experts (Moon & Liu, 2019). As an example, sequential pattern min-

ing (SPM) is useful to indicate how closely students’ procedural behaviors for program-

ming are similar to those from experts. This result may indicate students’ skill

acquisition level. Evidence supports that prior constructivist pedagogical interventions

aimed to capture how expert-like scientific understanding emerges by students’ in-

process actions (Sengupta et al., 2013). Second, machine-learning-based prediction

modeling, such as recurrent neural network (RNN: Mao et al., 2019) and Bayesian

knowledge tracing (BKT: Jiang, Ye, & Zhang, 2018), enables researchers to estimate how

likely individuals improve their competencies. Whereas SDA aims to disclose students’

action patterns and consequences, prediction modeling approaches aim at their future

improvements of target competencies.

Results from those approaches are evidence of how to deliver personalization to indi-

vidual learners. To run all approaches aforementioned for determining adaptation

types, the accurate estimation of the threshold-based model is important. To set the ac-

curate threshold range for the competency states for automatic decision-making (i.e.,

high. Intermediate, and low), supervised dimensionality-reduction techniques can be

used—such as linear discriminant analysis (LDA).

Module adaptations and data visualizations

Task modeling

Task modeling refers to the design and development of a collection of learning activ-

ities that promote learners’ performance. We propose task modeling for adaptive pre-

sentations of tasks based on learners’ improvements in target competencies. In this

framework, we contextualize our task modeling approach guided by Corbalan, Kester,

and van Merriënboer (2006). The original model consists of three main components:

characteristics, personalization, and learning-task database. First, in the component

characteristics, learner profile information (cognitive and emotional profile) and task

characteristics are documented through learners’ activity artifacts. Learners’ artifacts

are automatically logged to compute learners’ mental effort level (cognitive load) and

task performances (competencies). Second, as personalization, based on the activity logs

from artifacts, the difficulty of a task, as well as learning support types change. Third,
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all the activity logs are archived in the learning-task database to determine the level of

personalization—indicating which tasks should be presented.

Task module adaptation and visualization

Derived from the threshold-based model, which specifies how task modules are pre-

sented, this framework envisions two personalization approaches: sequencing and feed-

back. First, the module adaptations can be executed by sequencing design (e.g., topical

sequencing, whole-to-part sequencing, and part-to-whole sequencing) (Reigeluth,

1999). Either individual sequencing or its combinations can be taken into consideration

depending on learners’ CT improvement during programming exercises. For example,

in learners’ modeling and simulation tasks, if their emotional profile is lower than the

threshold range, different contexts or scenarios of modeling tasks would be displayed

for individual learners. Second, in-situ feedback during learners’ practices is given. De-

livering just-in-time (JIT) feedback indicating rules and grammar is considered to pro-

mote learners’ modifications of programming codes effectively. For example, using

intelligent tutors gives JIT cues that correct students’ errors in their exercises. If the re-

sults of students’ cognitive profile data are lower than the threshold range, more hints

and clues can be delivered for the target individuals.

In addition to module adaptations, data visualizations provide information on

learners’ skill progression during programming exercises. As an assessment for learning

(Black, Harrison, & Lee, 2003), this step aims to enhance students’ CT by promoting

their self-monitoring of learning outcomes. For instance, data visualizations can include

interactive diagrams that can be accessed by learners to obtain information on which

knowledge and skills should be improved.

Discussion
The proposed framework in this study provides a guideline for using LA as one of the

ways to support personalized learning in OER. Prior research has mainly focused on

producing and sharing OER (Wiley, Bliss, & McEwen, 2014). Although it has been ex-

plained that OERs have the potentials to support personalized learning (Yuan et al.,

2008), specific guidelines or frameworks that inform the implementation are lacking.

This framework can be a starting point for discussions of such guidelines and

frameworks.

In addition, further LA designs and implementations could stem from this

conceptualization. Specifically, research needs to explore how integration of LA in OER

systems can better predict learners’ competencies in programming which can contrib-

ute to learners’ computational thinking abilities. Future empirical studies would help

educational researchers in identifying which types of LA designs and implementations

better support the personalized OER. For example, emerging multimodal LA tech-

niques are an approach to deliver comprehensive information on learners’ meaningful

competency progressions (Andrade, Delandshere, & Danish, 2016). Multimodal LA re-

fers to the data technique which combines computer-interaction logs and real-world

signals from learners. A personalized OER combined with multimodal LA techniques

would consider observing learners’ multi-channel data to indicate and recommend op-

timized learning modules tailored to learners’ competency level.
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In terms of content designs in OERs, future research needs to consider the inte-

gration of instructional design (ID) elements for personalization. First, discussions

on contextualized instruction designs for teaching CT in OERs are essential. Previ-

ous research on MOOCs have focused on accessing the platform’s benefits, such as

free and open access to learning materials, self-paced learning with time and place-

independent online courses, as well as freedom in the selection of learning mate-

rials (Gao, 2016; Mullen et al., 2017). As shown in Sunar, Abdullah, White, and

Davis’s (2015) review, there have been efforts to propose and implement

personalization in MOOCs. For example, researchers have introduced designing

learners’ personalized repositories in MOOCs, which used as book collections and

Web 2.0 tools with bibliographical indices that enable learners to better search for

their preferred learning materials (Cohen, Reisman, & Sperling, 2015; Mikroyanni-

dis & Connolly, 2015). However, existing OER designs and implementations are

still limited in enhancing learners’ CT during web-based programming exercises.

Future design-based research is necessary to explore how OERs can be tailored to

teaching and learning CT. Moreover, while the present study stated the role of

content-sequencing and feedback designs in the OER framework, we could not

thoroughly discuss how those design implementations can be better coordinated in

teaching CT. There is still a gap in coordinating between data-mining approaches

from LA and personalized ID implementations during programming exercises. For

example, novice learners in programming exercises are likely to experience high

cognitive load as they interpret and create programming codes, but implications on

how to reduce novice learners’ cognitive load.

The purpose of the study was to propose a conceptual framework that illustrates how

to support learners’ CT developments through personalized designs of OERs. With this

in mind, study aimed to provide a groundwork for designing personalized OERS that

support learners in developing CT competencies. In order to achieve the goal, several

foundational literatures have been reviewed. First, through the review of literatures on

computational thinking, we have identified essential elements of computational think-

ing, introduced computing platforms and learning environments that are designed and

built to support and enhance computational thinking, and explored cases of formative

assessments and adaptations of teaching computational thinking. Second, we also

reviewed literatures on OERs, personalized learning, and learning analytics and their

implications in enhancing CT for learners.

Based on the conceptualizations based on these reviews, we formulated a personal-

ized OER framework and illustrated how such a framework is capable of observing and

supporting learners’ CT. Our OER design framework consists of data extractions, data

fusion and processing, inferential data mining, and module adaptations and data visual-

izations. Moreover, as a way to observe learners’ CT skills in OERs, this study suggested

the execution of LA to assess the evidence of learners’ CT capabilities. We proposed

that this conceptualization of a personalized OER framework requires further empirical

studies to confirm how personalized OER designs can improve in identifying and sup-

porting learners’ CT competencies. While we acknowledge the need for our framework

to be validated by an empirical study, we believe that the study can play a role in pro-

viding a groundwork for designing and developing a theory-informed personalized

OER that can improve learners’ CT competencies.
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