
RESEARCH Open Access

G4D - a treasure hunt game for novice
programmers to learn debugging
Akhila Sri Manasa Venigalla* and Sridhar Chimalakonda

* Correspondence: cs19d504@iittp.
ac.in
Research in Intelligent Software &
Human Analytics (RISHA) Lab,
Department of Computer Science
and Engineering, Indian Institute of
Technology, Tirupati, India

Abstract

Visual Programming Environments (VPEs) are predominantly being used to teach
programming concepts through interactive games with interesting narratives. Games
have been developed to teach basic concepts of programming such as deriving
logic, writing code, debugging the code and so on. Debugging code is one of the
most important activities that can improve the skill of tackling a problem. In
programming, one needs to identify the correct location of an error and fix it, which
is usually learned through experience. Games have been developed to teach
debugging to novice programmers. Syntactical errors occur frequently in the early
stages of programming. The existing debugging games aim to support users in
debugging the logic of the problem, but do not target on correcting the code
snippets based on syntax. To address this challenge of providing syntactical support,
we propose a treasure hunt based debugging game, in which users pass through
various levels of the game by debugging code snippets written in C language. We
have evaluated G4D based on MEEGA+ model, with 20 volunteers, having different
programming backgrounds. The results of the user survey indicate that G4D has a
good quality level and about 75% of the volunteers have either strongly agreed or
agreed to recommend G4D to their colleagues.

Keywords: Learning technologies, Visual programming environments, Novice
programmers, Debugging games

Introduction
Computers and computer based technologies are impacting a broad spectrum of our

society. They are the motivating factor of advances in areas as diverse as education,

engineering, medicine and basic sciences. It has been observed that integrating

technology with education has a positive impact on the attitudes of teachers and

students (Christensen, 2002). Online learning has proven to be effective in enhancing

student learning outcomes (Nguyen, 2015). Various techniques are being integrated in

classrooms to make learning interactive, interesting and to increase retention capacity

of learners. Many domains such as medicine, construction and design of machines and

buildings, computer programming and so on use technology enhanced tools to support

better conceptual and experimental understanding of students (Cook et al., 2011; Li,

Yi, Chi, Wang, & Chan, 2018; Teng, Chen, & Chen, 2018). With the intervention of

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Smart Learning EnvironmentsVenigalla and Chimalakonda Smart Learning Environments (2020) 7:21
https://doi.org/10.1186/s40561-020-00129-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s40561-020-00129-4&domain=pdf
http://orcid.org/0000-0003-4356-0334
mailto:cs19d504@iittp.ac.in
mailto:cs19d504@iittp.ac.in
http://creativecommons.org/licenses/by/4.0/

intelligent tutoring systems and visual programming environments, learning program-

ming has become simple and accessible. Games allow an interactive, creative and enter-

taining experience and hence could be used in many introductory programming

courses. It has been observed that games increase motivation among students towards

learning various concepts, specifically in the area of computing (Barnes, Powell, Chan,

& Lipford, 2008). Several games are being developed to support learning of various

computing aspects such as programming in a visual and interactive manner. It has also

been observed that such games help in creating robust and deeper conceptual under-

standing among the students (Eagle & Barnes, 2009).

Debugging is considered as one of the most important phases and a fundamental skill

of programming (Beller, Spruit, Spinellis, & Zaidman, 2018; Ko & Myers, 2005). It is

also regarded as a skill that is challenging to learn and teach (McCauley et al., 2008).

Debugging comes with practice and hence novice programmers face difficulties in

identifying the errors and fixing them (Gould, 1975; McCauley et al., 2008). Also, nov-

ice programmers take significantly more time in correcting the errors than professional

developers as they lack the idea of strategies that could be used to debug (Chiu &

Huang, 2015). Studies also report that good programming understanding doesn’t always

imply effective debugging skill and hence suggest emphasizing on debugging in

programming courses (Ahmadzadeh, Elliman, & Higgins, 2005). It has been observed

that students who take up debugging exercises spend less time debugging their

programs than those who don’t (Chmiel & Loui, 2004). Also, debugging improves

problem solving skills among various age groups. Researchers have developed online

tools and games to help programmers debug their code and to teach debugging

(Luxton-Reilly, McMillan, Stevenson, Tempero, & Denny, 2018; Miljanovic & Bradbury,

2017).

Most of the existing games that teach various programming concepts, including de-

bugging, target students in primary and middle school level (Lee, 2014; Miljanovic &

Bradbury, 2017). Hence they focus more on correctness of the logic, rather than cor-

rectness of the syntax. However, most of the errors during programming occur due to

invalid syntax (Ko & Myers, 2004; McCall & Kolling, 2014). Also, it has been observed

that understanding syntax of a program significantly contributes in debugging the pro-

gram, along with semantic understanding (Luxton-Reilly et al., 2018). Some compilers

and IDEs support syntactical debugging by automatically correcting few errors, which

are mostly the cases of missing characters such as semicolon in some programming

languages. Other syntactic errors are displayed as error messages. Attempts are being

made to enhance these syntactic error messages to support programmers with more

specific information about the error and ways to resolve the error, but these enhance-

ments have been observed to ineffectual in few cases (Denny, Luxton-Reilly, & Carpenter,

2014). Also, it has been observed that syntactic errors are primary con-cerns of majority

of the programmers (Gould, 1975). Considering the importance of syntactic knowledge

and the amount of time that might be spent by novice developers in resolving syntactic

errors, it is necessary to make novice programmers aware of syntax of the program. This

could help in saving time spent in resolving programming errors. Therefore, we propose

the prototype of a debugging game, G4D, that allows users to debug a code snippet, by

navigating through a set of clues. It provides users with various practice problems, with

errors that occur frequently. This gives novice programmers an exposure to debugging

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 2 of 21

and contributes to their experience. This could help learners, who are partially aware of

syntax, to improve their debugging efficiency.

The contributions of this paper are as follows:

A game aimed to teach debugging to novice programmers, specifically to debug

syntactic errors.

The pedagogical approach and theories followed by the game.

An evaluation of the game based on player experience, usability and correctness of

the game.

The remainder of this paper is structured as follows. Section 2 discusses the related

work followed by Section 3, which focuses on design methodology of G4D. Section 4

talks about development of the game and presents a use case scenario of the game. We

present the evaluation and user survey results in Section 5 and Section 6, respectively.

Finally, we discuss the limitations in Section 7 and we conclude our argument along

with future directions in Section 8.

Related work
With the increase in acceptance rates of online teaching and learning environments,

several tools to teach programming and make learning interactive, interesting and

creative using various technologies such as Mixed Reality, Artificial Intelligence and so

on are being developed.

Scratch facilitates users to drag and drop blocks of code snippets, to perform actions

in a visual environment. It aims to teach programming and problem solving to students

of primary and middle school (Resnick et al., n.d.). Alice supports the learning of basic

programming concepts through 3D visualizations. A storytelling extension has also

been added to Alice, which enables users to create 3D animated stories through basic

programming concepts (Cooper, Dann, & Pausch, 2000; Kelleher, Pausch, Pausch, &

Kiesler, 2007). Greenfoot provides a custom defined environment with predefined

functions to support animations, graphics, sound and so on, to learn Java programming

language (Kolling, 2010).

Among various tools developed to support novice programmers, few tools focus on

debugging. Delta debugging, introduced by Zeller identifies a minimal subset of \fail-

ure-inducing” changes that prevent the program from working correctly (Zeller, 1999).

Ko et al. have proposed an interrogative tool, whyline, that facilitates users to debug by

slicing the program (Ko & Myers, 2004). Lapidot et al. have integrated debugging with

music in (Lapidot & Hazzan, 2005). They have given a faulty code, linked up with a

well-known music bit, with lyrics and melody to students. The students had to debug

the code until the song is rightly played. The CMeRun tool proposed by Etheredge,

enables users to look into the code by displaying each statement as it gets executed and

thus helps them in identifying the point of error (Etheredge, 2004). Luxton et al. have

proposed an online debugging tool, LadeBug, that provides users with predefined exer-

cises containing faulty code snippets. Users can debug the code snippets by identifying

the point of error based on information provided, and also add checkpoints to the code

(Luxton-Reilly et al., 2018).

Chiu et al. have observed that using games to debug effectively improves the

programming concepts of students (Chiu & Huang, 2015). RoboBug game has been

designed to support debugging of various programming languages. It provides a set of

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 3 of 21

debugging tools that the user has to select in a given time limit based on the error

identified (Miljanovic & Bradbury, 2017). Gidget game involves users to correct

multiple sets of pre-written statements at each level to ensure required navigation and

communication among characters in game (Lee, 2014).

Gidget uses basic English statements, and does not use the language syntax. It focuses

on arriving at correct logic, not on correct syntax. RoboBug uses predefined debugging

tools, where the user needn’t use his/her skill of debugging. Although there are tools

and games to help novice programmers learn debugging, to the best of our knowledge,

tools lack creativity and the existing games mostly target students of primary and

middle schools. G4D aims to help novice programmers, in the first year of their under-

graduate course and those who have minimum knowledge on programming, in learning

to debug the syntax, rather than the logic, through a creative treasure hunt themed

game. The treasure hunt theme used to debug is another distinguishing factor of the

game.

Design and methodology
Programmers generally consider locating the defect as one of the most time consuming

and crucial tasks (Jones, Harrold, & Stasko, 2002). In the proposed game, we try to sup-

port novice programmers by encouraging them to isolate the chain and then correct

the defect in the isolated chain.

A faulty code snippet is presented to the player. Clues to debug the code snippet are

provided to the player when few boxes in the game are broken. The player has to

identify the right place in the code snippet to insert these clues, which shall result in

debugging the code. This might improve the skill of locating the defect. Also, the player

has to identify appropriate clues as few faulty clues are also presented. These tasks shall

thus enable players to practice isolating and correcting a defect.

We have developed a prototype version of G4D, a treasure hunt based debugging

game to support novice programmers in debugging a given code snippet. The game

deals with a girl, Veda, whose spaceship gets crashed on an alien planet. She can repair

her spaceship and come out of the planet only after she finishes all levels of the game.

Levels in the game refer to cities guarded by gates, on the planet and, to pass through

each level, she will have to collect and fix few broken objects that can be used to repair

different parts of the spaceship. Once, all the required objects are collected in the level,

the city gates can be opened using a key that Veda finds in the city. The player takes

the avatar of Veda and will be provided with few clues in each level to fix the object.

These clues shall be placed in various boxes in the city. Few boxes also contain

misleading clues, and some boxes might be empty. The key required to open the city

gates is placed on one of the rocks in the city. When the player opens a box, a clue is

prompted and added to the collection list. Once all the clues are collected, when player

reaches crashed component of spaceship, faulty code snippet, with a numbered list of

collected clues is displayed. The player should correctly map clue number to respective

erroneous parts of the code, failing which, the player will again be navigated to space-

ship, where he/she is given another chance to map the clue numbers.

The parts of spaceship to be fixed in each level are analogous to faulty code to be

debugged, and objects required to fix these parts are analogous to steps to be followed

to debug the faulty code. At each level, the player will be provided with 5 faulty code

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 4 of 21

snippets that are to be debugged. The clues provided to the player to fix the code

represents the debugging steps. Hence, the player, in the course of game, would be able

to learn and practice debugging various code snippets and be wary of the syntax.

We have designed G4D by following scaffolding approach to support the pedagogy of

learning debugging, with considerable care taken towards cognitive load that could be

induced on the users by adapting cognitive load theory.

Scaffolding to support pedagogical approach of learning to debug

Scaffolding technique has been observed to positively support development of educa-

tional games, specifically to support the pedagogy of learning programming (Jantan &

Aljunid, 2012). Hence, we have also employed few scaffolding characteristics among

the 10 characteristics that were observed to support games for programming (Jantan &

Aljunid, 2012), in the design of G4D. The aim of G4D to ease learning to debug

through serious game and the difficulties involved in learning debugging such as

problem identification and solving also are observed to be inline with the advantages

provided by scaffolding technique. Metaphor Scaffolding has been first introduced as

an integrated approach to support learning by David Wood, Jerry Bruner and Gail Ross

(Wood, Bruner, & Ross, 1976). The idea of integrating scaffolding techniques with

learning is to initially mask the domain specific information and provide details on ap-

proaches and processes involved in the domain through metaphors, with eventual

unmasking of the domain specific information (Guzdial, 1994). Scaffolding helps

learners in accom-plishing tasks with minimal intervention from the teacher, thus

enabling novices to solve problems that would have been beyond the reach with

unassisted e orts (Wood et al., 1976). In G4D, the scaffolding technique is implemented

by initially masking the details involved in debugging such as searching for the solution

to correct a defect with the metaphor of searching for parts of the broken spaceship.

Broken Spaceship to be repaired metaphor is implemented to design the game. The

instructions provided in the game, based on various actions performed by users in the

game support the scaffolding characteristics - Clarifies purpose, Appropriateness,

Continuity and Keep Students on task. Users are also equipped with frequent message

prompts that guide users on the next steps to be taken, thus implementing the scaffold-

ing characteristic of providing Clear Direction. As the levels in the game progress,

support provided to users in view of the number of clues and the message prompts

related to clues is gradually reduced, thus adapting Transfer of responsibility and

handover/takeover scaffolding characteristics.

Cognitive load theory in design of G4D

We have designed G4D based on cognitive load theory, that aims to make learning

more efficient (Sweller, 1988). One of the main methods of cognitive load theory that

has been followed in designing G4D is to break down a problem into parts and then in-

tegrate these partially completed blocks of the problem to arrive at a solution for the

main problem. G4D facilitates users to debug a program by identifying and decoding

the clues that correspond to statement level and thus support division of the problem.

Clues found by users correspond to individual statements in program and debugging

each statement based on these clues helps users to eventually debug the complete

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 5 of 21

program. The main storyline of G4D also stays inline with this divide and solve method

of cognitive load theory, as it deals with repairing a broken spaceship part-by-part in

each level. Figure 1 depicts the cognitive load theory method of solving a problem by

breaking it into sub parts with respect to G4D. The program is divided into statements

that are debugged with the help of corresponding clues found while playing G4D.

Incorporation of steps to debug in G4D environment

Effective Debugging is an essential skill for programming. Debugging refers to appro-

priately identifying the point of error and resolving it. It is one of the most common

tasks that have to be dealt by programmers at all levels, from novice programmers to

highly skilled programmers. G4D has been designed to support incorporation of three

of the seven debugging steps mentioned by Andreas Zeller in (Zeller, 2009).

The seven steps mentioned by Andreas Zeller are as follows:

Step 1: Track problem in database.

Step 2: Reproduce Failure.

Step 3: Automate.

Step 4: Find possible infection origin.

Step 5: Focus on most likely origin.

Step 6: Isolate infection chain.

Step 7: Correct Defect.

The first three steps refer to real-time developers of an organization, where defects

are reported as unforeseen problems by users or testing teams. They should hence be

logged onto the database, reproduced and an automated test case should be developed.

However, for novice programmers, debugging starts from step 4, as the error would

most likely be reported in the code by themselves, rather than testing teams, and hence,

Fig. 1 Design of G4D based on Cognitive Load Theory

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 6 of 21

they might not have to track, reproduce the error or automate a test case. The scenario

for which a program fails serves as a test case by itself.

The clues found by the player in the game, for a specific program are displayed

adjacent to the faulty code snippet, with an aim to instigate player’s thought process in

focusing on the possible infection origin and most likely origin of infection. The player

is required to select the appropriate position to fill in obtained clues in the code

snippet. This requires identification of the line that causes defect, which is equivalent

to identifying possible infection origin (Step 4), and the specific position in the identi-

fied line that is to be corrected, which is equivalent to finding the most likely origin of

infection (Step 5). Furthermore, points are awarded to users for locating the appropri-

ate position of each clue, which motivates players towards the infection chain isolation

step (Step 6), as the player requires to isolate defective points before locating appropri-

ate positions for the clues. Finally, the player is required to locate apt positions in a

program for all the clues, thus correcting the defective program (Step 7). G4D aims to

instigate the player’s to follow these steps, that finally helps them in debugging the

program and consequently qualifying various levels in the game, moving towards fixing

the broken spaceship, in accordance with storyline of the game.

G4D also tracks time taken by player in the game and prompts the player with appro-

priate dialogues, that are aimed to provide directions to the player towards the next

steps to be taken.

The existing literature has also specified certain criteria that are expected from serious

games, to ensure that the advantages of learning through games is preserved. These cri-

teria include interdisciplinary and social learning, facilitating learning out-comes with in

game assessments, use of feedback systems that drive users towards success by ensuring

transparent approaches” and so on (De Freitas, 2018). G4D uses the broken spaceship

metaphor in the game to adapt the interdisciplinary learning aspect, rather than having

pure programming. It also uses the background of an alien planet to retain players’ inter-

est and motivation. The players are notified about cor-rectness of identification of loca-

tions during the game, based on which, players could redo the identification of erroneous

locations, thus facilitating learning through in-game assessment. The feedback is provided

as dialogues to help player progress in the game based on time spent by the player, and

points are given to the player on correct debugging to encourage the player. In case of in-

correct identification, the player is redirected to the crashed spaceship to redo debugging

of the code, with clues retained, ensuring constructive feedback mechanism.

Development and user scenario
Development

We have developed G4D, a treasure hunt game to learn debugging using Unity 3D

game engine. Figure 2 shows the approach followed to develop the game.

We have used 3D Kit to define player features, model actions of player, import struc-

tures, layouts and functionalities of these structures. Scripts to define controls of each

object in the game such as player, alien enemy animal and other structures have been

written in CSharp programming language. Faulty Code snippets, with their correspond-

ing correct code snippets, written in C language are defined. Clue sets required to

debug these code snippets are also defined.

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 7 of 21

Clue sets that can help in debugging the code snippets, faulty code snippets to be

debugged and correct code snippets are then uploaded onto the database. Functionali-

ties and structures imported from 3D Kit and Scripts written in CSharp programming

language are then uploaded to the database. Each structure is associated with

predefined actions that can be performed. Each structure-action pair in the game is also

associated with corresponding control features inside the database. Each faulty code

snippet is associated with a clue set that is useful in debugging the snippet. This pair of

faulty code snippet and clue set are then linked with the correct code snippet in the

database. The camera angle and direction, and the light direction are defined with the

help of Unity 3D. Unity 3D helps in integrating the scripts containing controls, written

in CSharp programming language, with defined structures and actions.

A global timer is set to track time taken by player in the game at each point. If the

player is observed to show minimum progress during a threshold time period, a

dialogue is prompted to the player indicating the immediate next step to be taken by

the player in the game.

User scenario

Consider Moksha, a novice programmer, who is enthusiastic in learning debugging

aspect of programming. She considers to play G4D, to learn and practice debugging.

She starts to play the game after knowing the story-line, and takes up the character

of Veda in the game. She lands on the screen of level 1, as shown in Fig. 3. [A] of Fig. 3

displays the number of lives, the player is left with. [B] of Fig. 3 is the player character,

Veda. [C] of Fig. 3, refers to background, which is the alien planet. [D] of Fig. 3 is the

crashed spaceship component that is to be repaired in this level. When Moksha reaches

the spaceship, she is shown a code snippet that is to be debugged, as in Fig. 4. Moksha

then moves forward in the game, to find boxes, as shown in [B] of Fig. 5 that contain

clues to debug the given code snippet. She also comes across alien enemy animals that

are capable of attacking, which results in degradation of the player’s life. [A] of Fig. 6

depicts Veda killing the animal using the weapon provided. [B] of Fig. 6 shows the ani-

mal attacking Veda and [C] of Fig. 6 shows the loss of Veda’s life as a consequence.

Fig. 2 Development of G4D

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 8 of 21

Once, all the clues and key to open the alien city doors are found, Moksha is prompted

to debug the given code, after which the key gets activated, the door can be opened

and Moksha can go to the next level. Key is depicted by [A] in Fig. 7 and the door is

depicted by [B] in Fig. 7.

In course of the game, when Moksha finds a box, she breaks it with the provided

weapon, to find clues that help in debugging the code snippet. She finds the first clue

to debug, which is displayed as shown in [A] of Scene 1 of Fig. 8. When Moksha

Fig. 3 Landing Scene of G4D

Fig. 4 Code Snippet to be debugged

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 9 of 21

reaches the crashed spaceship, the code snippet to be debugged, with clues collected till

then is displayed, as shown in [A] of Scene 2 of Fig. 8. Moksha, then moves forward to

find the other clues as shown in Fig. 9. She finds clue return, as shown in Scene 1 of

Fig. 9, in a box, which is displayed along with the code snippet to be debugged, when

Veda visits the crashed spaceship (Scene 2 of Fig. 9). She finds the other two clues

circle and %d (Scene 3 and 5 of Fig. 9) and the same is then displayed alongside the

code snippet, as shown in Scene 4 and Scene 6 of Fig. 9.

Once all the clues are found, Moksha goes back to crashed component of the space-

ship to debug the code that can repair this component. She first identifies the location

of clue in the code snippet by selecting the position on a specific line with mouse

pointer. She is then displayed a blank as shown in Fig. 10, in which she can fill in the

clues. She selects the lines and positions in which clues are to be inserted as shown in

Scene 1 of Fig. 11, but as the selected line is incorrect (pointed by [A] of Scene 1 in

Fig. 11), she looses some points in her score and is navigated back to the crashed space-

ship with a dialogue as displayed in Scene 2 of Fig. 11. She selects the position of error,

again, as shown in [A] of Scene 3 of Fig. 11. But, as one of these selected positions is

Fig. 5 Box containing clues

Fig. 6 Scenes depicting killing enemy animal and animal attacking Veda

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 10 of 21

incorrect (pointed by [A] in Scene 3 of Fig. 11), she looses some points in her score

and is navigated back to the crashed spaceship with a prompt as displayed in Scene 4

of Fig. 11. She attempts again, identifies the right positions, and fills in the clues based

on the numbers associated with each clue as shown in Scene 5 of Fig. 11. Since, these

positions are incorrect, Veda’s life gets deteriorated and she is navigated back to the

crashed part of the spaceship as shown in Scene 6 of Fig. 11. Moksha then selects the

appropriate location and enters correct positions (numbers associated with clues) after

revisiting the code snippet as shown in Fig. 12. Since the selected are positions are

correct, the key found earlier gets activated, and Veda can open the city gates, cross the

city and move forward to next levels.

Evaluation
Instruments for evaluation

G4D has been developed as a treasure hunt based 3D game, with an aim to support

and motivate users to learn and practice debugging of code snippets. Hence, it has been

Fig. 7 Alien city door and key to open it

Fig. 8 First clue to debug

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 11 of 21

predominantly evaluated to assess its usability, correctness and player experience.

Several existing games that have been designed with similar aim of supporting teaching

and learning, have been evaluated based on similar user experience such as system

interaction, learning content, terminology, appearance, user satisfaction, likeability and

so on (Lytridis & Tsinakos, 2018; Tlili, Essalmi, & Jemni, 2016). Models such as

EGameFlow (Fu, Su, & Yu, 2009), MEEGA and MEEGA+ (Petri, von Wangenheim, &

Borgatto, 2016) have also been used to extensively evaluate educational games in vari-

ous aspects of user experience. Considering the current scope of G4D, we observed that

an adapted version of MEEGA+ would fit well for evaluating G4D (Petri et al., 2016).

MEEGA+ has been introduced to evaluate quality of games for computing education

by Petri et al. and deals broadly with two quality factors - usability and player experi-

ence. Thirteen dimensions for these two quality factors have been defined in the model

as presented below. We have also included correctness criteria to be evaluated with

respect to the clues provided in the game along with Player Experience and Usability.

Fig. 9 Finding clues

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 12 of 21

Fig. 11 Incorrect Debugging Scenarios

Fig. 10 Selecting error position on a line

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 13 of 21

Player Experience -

Focused Attention

(FA) Fun (F)

Challenge (Ch)

Social interaction (SI)

Condence (Co)

Relevance (R)

Satisfaction (S)

Perceived Learning (PL)

User Error Protection (UEP)

Usability -

Learnability (L) Operability (O)

Asthetics (A)

Accessibility (Acc)

Correctness (C)

G4D has been designed as an o ine, single player 3D game, that can be played on a

personal laptop or a desktop. Also, G4D has not been experimented in any course, but has

been developed independent of the course, to address a wider range of audience. Considering

these factors in the scope of G4D, we have omitted assessment of two dimensions - Social

interaction (SI) and Perceived Learning (PL) as they deal with multi-player environments and

introduction of the game in a course. Also, we have excluded User Error Protection (UEP)

dimension as it does not come under the scope of G4D. Existing questionnaires related to

these dimensions from various sources have been grouped and customized with an aim to

improve the original MEEGA questionnaire in MEEGA+. The current version of G4D is a

prototype version, in its initial stages, with only one level. Hence, we have excluded few

questions that dealt with progress and experience in the game across multiple levels.

Fig. 12 Debugging code correctly

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 14 of 21

Participants

Thus, to evaluate G4D, we considered 20 volunteers in the age group of 17–25 years,

14 male and 6 female, with different programming backgrounds. This selection of

volunteers with multiple programming languages is to obtain feedback about both

usefulness and correctness of clues displayed to the users.

Procedure for evaluation

We performed a study with a 5-point Likert scale based questionnaire of 27 questions,

of which, four questions dealt with demographics of the volunteers and the other 23

dealt with the dimensions mentioned above and correctness of clues. The volunteers

were requested to play G4D and provide their reviews and suggestions by answering

the questionnaire. Since we did not consider all the dimensions of MEEGA+ question-

naire, we have manually evaluated the survey results, following the evaluation method-

ology of MEEGA+. We have hence calculated the quality of G4D based on Item

Response Theory (IRT) and have considered the Cronbach Alpha values mentioned in

MEEGA+ for the two quality factors.

Results
The demographics of volunteers represented in Table 1 infers that about 50% of the

volunteers have zero years of prior programming experience. Also, about 55% of the

volunteers play games either very often or often. The results of user survey are

presented in Table 2, in terms of mean and standard deviation. We have then sorted

Table 1 Demographics of volunteers

Frequency Percent (%) Cummulative (%)

Age

17 3 15 15

18 4 20 35

19 2 10 45

20 6 30 75

21–25 5 25 100

Gender

Male 14 70 70

Female 6 30 100

Prior Programming Experiencein years

0 10 50 50

1 2 10 60

2–3 6 30 90

4–5 2 10 100

Frequency of playing games

Very Often 5 25 25

Often 6 30 55

Neutral 7 35 90

Sometimes 1 5 95

Never 1 5 100

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 15 of 21

Table 2 Adapted MEEGA+ questionnaire

Variable Question Mean SD

A G4D design is attractive (interface, graphics, cards, boards, etc.) 4 0.648

(1 = strongly disagree, 5 = strongly agree)

L I needed to learn a few things before I could play G4D. 3.45 0.887

(1 = strongly disagree, 5 = strongly agree)

L Learning to play G4D was easy for me. 4.2 0.767

(1 = strongly disagree, 5 = strongly agree)

L I think that most people would learn to play G4D very quickly. 4.15 0.745

(1 = strongly disagree, 5 = strongly agree)

O I think that G4D is easy to play 4.1 0.718

(1 = strongly disagree, 5 = strongly agree)

O G4D rules are clear and easy to understand. 3.95 0.759

(1 = strongly disagree, 5 = strongly agree)

Acc The fonts (size and style) used in G4D are easy to read. 3.7 0.923

(1 = strongly disagree, 5 = strongly agree)

Co When I first looked at G4D, I had the impression that it would
be easy for me

4.15 0.875

(1 = strongly disagree, 5 = strongly agree)

Ch G4D is appropriately challenging for me. 3.5 1.27

(1 = strongly disagree, 5 = strongly agree)

Ch G4D provides new challenges (o ers new obstacles, situations
or variations)

at an appropriate pace.
(1 = strongly disagree, 5 = strongly agree)

3.85 0.745

Ch G4D does not become monotonous as it progresses (repetitive
or boring tasks).

3.75 0.966

(1 = strongly disagree, 5 = strongly agree)

S Completing G4D tasks gave me a satisfying feeling of
accomplishment.

3.8 0.951

(1 = strongly disagree, 5 = strongly agree)

S It is due to my personal e ort that I managed to advance
in G4D.

3.35 1.089

(1 = strongly disagree, 5 = strongly agree)

S I feel satisfied with the things that I learned from G4D 3.85 1.039

(1 = strongly disagree, 5 = strongly agree)

S I would recommend G4D to my colleagues. 3.9 1.071

(1 = strongly disagree, 5 = strongly agree)

F I had fun with G4D. 3.75 0.91

(1 = strongly disagree, 5 = strongly agree)

F Something happened during the game (game elements,

competition, etc.) which made me smile. (1 = strongly disagree,
5 = strongly agree)

3.85 0.988

FA There was something interesting at the beginning

of the game that captured my attention. 3.85 0.875

(1 = strongly disagree, 5 = strongly agree)

FA I was so involved in my gaming task that I lost track of time. 3.4 1.046

(1 = strongly disagree, 5 = strongly agree)

FA I forgot about my immediate surroundings while playing G4D. 3.5 0.827

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 16 of 21

out the means of all Player Experience related questions and those of Usability related

questions. According to MEEGA+, the Cronbach Alpha value for Player Experience

based dimensions is 0.856 and that of Usability based dimensions is 0.930. Applying

Cronbach Alpha values to means of the dimensions and then normalizing the value by

multiplying it with 10, resulted in quality score of 63.07. According to MEEGA+, games

with quality score value less than 42.5 are considered to be of low quality, between 42.5

to 65 are considered to be of good quality and those with value greater than 65 are

considered to be of excellent quality. Thus, we observe that, based on the survey

results, G4D has a good quality level. Based on this result, one of the description of

G4D quality is that the game frequently presents moments of fun among the users and

is observed to be relevant to users’ interests. Also, it has been stated that games with

Good Quality level provide moderate attention to players, however, they do not make

users forget about their surroundings. The mean and standard deviation of the

questionnaire also indicates that G4D provides apt clues in most scenarios. The mean

and standard deviation plots for the dimensions are represented in Fig. 13.

Few participants have also suggested to add more complex clues. Participants also

suggested and commented:

“A map could be arranged so that we can identify the boxes in the map”.

Fig. 13 Result of Questionnaire in terms of Mean and Standard Deviation of MEEGA+ quality dimensions

Table 2 Adapted MEEGA+ questionnaire (Continued)

Variable Question Mean SD

(1 = strongly disagree, 5 = strongly agree)

R The game contents are relevant to my interests. 3.75 1.118

(1 = strongly disagree, 5 = strongly agree)

C The clues given in G4D are correct with respect to the code
snippet provided.

4.25 0.716

(1 = strongly disagree, 5 = strongly agree)

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 17 of 21

“Adding more number of levels could be more useful”.

Discussion and limitations
The game uses the storyline of a spaceship crashed on an alien planet, and the player

has to find objects of the spaceship and eventually fix it through a series of levels. Once,

the spaceship is fixed, the player will succeed in leaving the alien planet. We designed

the objects to be fixed and fixing the objects to be analogous to faulty code snippets

and debugging the code snippets respectively. It might thus motivate users to play the

game and help them to practice debugging. The current version of G4D, being a basic

prototype version, comprises of only one level, with one faulty code snippet to be

debugged. While we intended to build the game to support programmers novice to

various programming languages, we have limited our scope only to C language.

Code snippets presented at each level are static and written in C language alone.

Debugged code snippets are evaluated by comparing with pre-loaded code snippets,

restricting the players to make changes in code and run these snippets. However, this

being a treasure hunt based game, players are expected to only use pre-fixed code

snippets. In the future versions, a compiler could be added to support dynamic code

snippets as well. Programming constructs and concepts used in code snippets are

narrow and limited.

Though the idea of G4D is to support learning to debug through a treasure hunt

based game, the current version displays clues as text in the dialogues, which is not

tightly coupled to the story of the game and could also induce cognitive load on the

users. The clues in the game could be presented in a better way through game

elements, that could improve the usability and player experience of the game.

The scaffolding techniques adapted in the design of prototype version of G4D do not

consider two of the 10 identified characteristics - Teacher Support and Internalization.

We plan to integrate other characteristics in the future versions of the game. Also,

other techniques that support pedagogy of learning programming could be explored to

identify the best fit technique.

Currently, the game has been evaluated based on a modified MEEGA+ model that

omitted three dimensions Social Interaction (SI), User Error Protection (UEP) and

Perceived Learning (PL), considering the present scope of G4D and the evaluation

environment of the game. Updating the scope of the game and evaluation environment

to include these three dimensions could provide better idea on usability and player

experience of G4D. Other evaluation methods that include both quantitative and

qualitative approaches such as assessing performance of participants before and after

using G4D or assessing performance of two teams, where one team uses G4D and the

other team does not use G4D before attempting to debug a program could also be

explored to arrive at better results.

Conclusion and future work
In this paper, we presented the prototype version of a treasure hunt game that can be

played on personal computers of users. Debugging is considered as one of the import-

ant tasks of programming (Beller et al., 2018; Ko & Myers, 2005). Identifying the

location of bug and resolving it is considered as an important task of debugging (Zeller,

2009). The proposed game could help novice programmers to learn how to debug

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 18 of 21

various code snippets written in C language. It displays the code snippet in C language

and thus also makes users wary of debugging a code syntactically, which could be help-

ful in real-time programming. Also, G4D provides directions to users as dialogues when

required, by intelligently tracking the time spent by users at a particular point in the

game. The user survey conducted based on MEEGA+ model with 20 volunteers

revealed that G4D has a good quality level. Also, mean value of 3.9 indicates that a

majority of the volunteers were willing to recommend G4D to their colleagues.

The game can further be extended to support various other programming languages

such as java, python and so on with minor changes in code snippets being stored. We

plan to increase the number of levels in the game and the complexity of code snippets

provided at each level. We also plan to extend the game to support multiplayer and

online modes. Increasing the number of dialogues and extending game plot could also

increase the motivation to play the game. We plan to extend the game to address

complex concepts of programming such as recursion, pointers and also to provide code

snippets that deal with the basic concepts in depth. We further plan to increase the

number of code snippets to be solved in each level and to introduce levels which have

code snippets that deal with the amalgamation of many basic concepts. In future

versions, we intend to add a map that displays layout of the alien city as suggested by

participants in the survey.

Considering the loosely coupled nature of the process of debugging with G4D sto-

ryline, we plan to improve G4D to provide clues for debugging as elements in the

game. Clues could be provided as parts of the broken spaceship such as screws, parts of

the engine, landing gear, reaction control thrusters, speed brake and so on, with clues

related to programming, embossed on these parts. Also, the code snippet to be

debugged could be depicted equivalent to repairing the broken spaceship, with lines of

code embossed on various parts of the space ship. The player would then be required

to identify parts of the spaceship that failed, locate specific points of failure in each

part, map identified points of failure to obtained spaceship parts and then place the

parts in appropriate positions, that could repair the spaceship. This could reduce the

cognitive load that would be induced on players due to the current loosely coupled

nature of the game, which could further motivate the users towards playing the game

and consequently learning debugging.

Also, G4D could be introduced as an exercise to a course in the first year of under

graduation, that involves introduction to programming for evaluation of the game. This

change in evaluation environment could facilitate in including Perceived Learning (PL)

dimension of the MEEGA+ model. Evaluation could also be enhanced to include pre

and post tests, before and after using G4D, that would be capable of providing quanti-

tative results based on the students’ performance. We also plan to explore qualitative

and quantitative evaluation mechanisms in the future.

Acknowledgements
We thank our under graduate student Deep Ghadiyali for helping us in developing the G4D game.

Authors’ contributions
Both the authors have equally contributed to the manuscript. While AV has contributed more in terms of
implementation of the idea, SC has contributed more in terms of the idea. The author(s) read and approved the final
manuscript.

Funding
Not applicable.

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 19 of 21

Availability of data and materials
The game and the results of evaluation are available from the corresponding author on reasonable request.

Competing interests
There are no competing interests.

Received: 4 May 2020 Accepted: 6 August 2020

References
Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of patterns of debugging among novice computer science

students. Acm Sigcse Bulletin, 37, 84–88.
Barnes, T., Powell, E., Chan, A., & Lipford, H. (2008). Game2learn: Improving the motivation of cs1 students. In Proceedings of

the 3rd international conference on game development in computer science education, (pp. 1–5).
Beller, M., Spruit, N., Spinellis, D., & Zaidman, A. (2018). On the dichotomy of debugging behavior among programmers. In

2018 ieee/acm 40th international conference on software engineering (icse), (pp. 572–583).
Chiu, C.-F., & Huang, H.-Y. (2015). Guided debugging practices of game based programming for novice programmers.

International Journal of Information and Education Technology, 5(5), 343.
Chmiel, R., & Loui, M. C. (2004). Debugging: From novice to expert. Acm Sigcse Bulletin, 36, 17–21.
Christensen, R. (2002). Effects of technology integration education on the attitudes of teachers and students. Journal of

Research on Technology in Education, 34(4), 411–433.
Cook, D. A., Hatala, R., Brydges, R., Zendejas, B., Szostek, J. H., Wang, A. T., & Hamstra, S. J. (2011). Technology-enhanced

simulation for health professions education: A systematic review and meta-analysis. Jama, 306(9), 978–988.
Cooper, S., Dann, W., & Pausch, R. (2000). Alice: A 3d tool for introductory pro-gramming concepts. Journal of Computing

Sciences in Colleges, 15(5), 107–116.
De Freitas, S. (2018). Are games effective learning tools? A review of educational games. Journal of Educational Technology &

Society, 21(2), 74–84.
Denny, P., Luxton-Reilly, A., & Carpenter, D. (2014). Enhancing syntax error mes-sages appears ineffectual. In Proceedings of the

2014 conference on innovation & technology in computer science education, (pp. 273–278).
Eagle, M., & Barnes, T. (2009). Experimental evaluation of an educational game for improved learning in introductory

computing. ACM SIGCSE Bulletin, 41(1), 321–325.
Etheredge, J. (2004). Cmerun: Program logic debugging courseware for cs1/cs2 students. Acm Sigcse Bulletin, 36(1), 22–25.
Fu, F.-L., Su, R.-C., & Yu, S.-C. (2009). Egameflow: A scale to measure learners’ enjoyment of e-learning games. Computers in

Education, 52(1), 101–112.
Gould, J. D. (1975). Some psychological evidence on how people debug computer programs. International Journal of Man-

Machine Studies, 7(2), 151–182.
Guzdial, M. (1994). Software realized scaffolding to facilitate programming for science learning. Interactive Learning

Environments, 4(1), 001–044.
Jantan, S. R., & Aljunid, S. A. (2012). An experimental evaluation of scaffolded educational games design for programming. In

2012 ieee conference on open systems, (pp. 1–6).
Jones, J. A., Harrold, M. J., & Stasko, J. (2002). Visualization of test information to assist fault localization. In Proceedings of the

24th international conference on software engineering. Icse 2002, (pp. 467–477).
Kelleher, C., Pausch, R., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle school girls to learn computer

programming. In Proceedings of the sigchi conference on human factors in computing systems, (pp. 1455–1464).
Ko, A. J., & Myers, B. A. (2004). Designing the whyline: A debugging interface for asking questions about program behavior. In

Proceedings of the sigchi conference on human factors in computing systems, (pp. 151–158).
Ko, A. J., & Myers, B. A. (2005). A framework and methodology for studying the causes of software errors in programming

systems. Journal of Visual Languages and Computing, 16(1-2), 41–84.
Kolling, M. (2010). The greenfoot programming environment. ACM Transactions on Computing Education (TOCE), 10(4), 14.
Lapidot, T., & Hazzan, O. (2005). Song debugging: Merging content and pedagogy in computer science education. ACM SIGC

SE Bulletin, 37(4), 79–83.
Lee, M. J. (2014). Gidget: An online debugging game for learning and engagement in computing education. In 2014 ieee

symposium on visual languages and human-centric computing (vl/hcc), (pp. 193–194).
Li, X., Yi, W., Chi, H.-L., Wang, X., & Chan, A. P. (2018). A critical review of virtual and augmented reality (vr/ar) applications in

construction safety. Automation in Construction, 86, 150–162.
Luxton-Reilly, A., McMillan, E., Stevenson, E., Tempero, E., & Denny, P. (2018). Ladebug: An online tool to help novice

programmers improve their debugging skills. In Proceedings of the 23rd annual acm conference on innovation and
technology in computer science education, (pp. 159–164).

Lytridis, C., & Tsinakos, A. (2018). Evaluation of the ARtutor augmented reality educational platform in tertiary education.
Smart Learning Environments, 5(1), 6.

McCall, D., & Kolling, M. (2014). Meaningful categorisation of novice programmer errors. In 2014 ieee frontiers in education
conference (e) proceedings, (pp. 1–8).

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008). Debugging: A review of
the literature from an educational perspective. Computer Science Education, 18(2), 67–92.

Miljanovic, M. A., & Bradbury, J. S. (2017). Robobug: A serious game for learning debugging techniques. In Proceedings of the
2017 acm conference on international computing education research, (pp. 93–100).

Nguyen, T. (2015). The effectiveness of online learning: Beyond no significant dif-ference and future horizons. MERLOT Journal
of Online Learning and Teaching, 11(2), 309–319.

Petri, G., von Wangenheim, C. G., & Borgatto, A. F. (2016). Meega+: An evolution of a model for the evaluation of educational
games. INCoD/GQS, 3, 1–40.

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 20 of 21

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., et al. (n.d.). Scratch: Programming for all.
Communications of the ACM, 52(11), 60–67.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285.
Teng, C.-H., Chen, J.-Y., & Chen, Z.-H. (2018). Impact of augmented reality on programming language learning: Efficiency and

perception. Journal of Educational Computing Research, 56(2), 254–271.
Tlili, A., Essalmi, F., & Jemni, M. (2016). Improving learning computer architecture through an educational mobile game. Smart

Learning Environments, 3(1), 7.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry,

17(2), 89–100.
Zeller, A. (1999). Yesterday, my program worked. Today, it does not. Why? ACM Sigsoft Software Engineering Notes, 24, 253–267.
Zeller, A. (2009). Why programs fail: A guide to systematic debugging, (p. 20). Elsevier.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Venigalla and Chimalakonda Smart Learning Environments (2020) 7:21 Page 21 of 21

	Abstract
	Introduction
	Related work
	Design and methodology
	Scaffolding to support pedagogical approach of learning to debug
	Cognitive load theory in design of G4D
	Incorporation of steps to debug in G4D environment

	Development and user scenario
	Development
	User scenario

	Evaluation
	Instruments for evaluation
	Participants
	Procedure for evaluation

	Results
	Discussion and limitations
	Conclusion and future work
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

