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Abstract

This paper proposes an Internet of Things device (IoT)-based ecosystem that can be
leveraged to provide children and adolescent students with STEM educational activities.
Our framework is general and scalable, covering multi-stakeholder partnerships, learning
outcomes, educational program design and technical architecture. We highlight the
importance of bringing Data-driven Thinking to the core of the learning environment as
it leads to collaborative learning experience and the development of specific STEM skills
such as problem-finding and solving, cognitive, analytical thinking, spatial skills, mental
manipulation of objects, organization, leadership, management, and so on. A successful
case study in Singapore involving tens of thousands of students is presented.

Keywords: Data-driven thinking, STEM education, Internet of things, Experiential
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Introduction
In the light of the increasing digitalization of society, the rapid growth of Big Data, Internet of

Things (IoT) or Artificial Intelligence applications has boosted the demand for experienced

professionals in STEM (Science, Technology, Engineering, and Mathematics) areas. The hype

associated with these applications has bring tremendous challenges and opportunities to

STEM education. Various stakeholders within the educational context have proposed digital

technologies such as IoT devices in the in- and out-of-school learning settings for children

and adolescent students’ education (Ito et al., 2015). An important question is then how

STEM education initiatives can adapt current trends of in- and out-of-school digital practices

(Ning & Hu, 2012). Among the main challenges that need to be tackled are the adoption of

new relationships between learners and teachers (Coccoli, Guercio, Maresca, & Stanganelli,

2014); the design of frameworks enabling assimilation of data-driven processes (Bielaczyc,

2006), and; the definition of digital strategies and education policies established to guide rele-

vant stakeholders’ engagement (Lee, Zo, & Lee, 2014).

Many proposals on how STEM education shall evolve while adapting and adopting

these new technologies can be found in the published literature. Some studies focused

on bringing specific Computer Science contents into schools’ curricula (Buffum et al.,
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2014; Wing, 2006). Some others preferred more hands-on approaches using hardware

components, such as single-board computers or microcontrollers, to offer practical ex-

periences in schools (He, Ji, & Bobbie, 2017). On a higher level, some researchers have

explored how new digital technologies can be leveraged in favor of active, informal, and

collaborative learning (Freeman et al., 2014; Kitsantas & Dabbagh, 2012). The study of

Fößl, Ebner, Schön, and Holzinger (2016), for instance, has shown that open education

approaches using video support and mobile technology allow students to experience

self-regulated learning and develop self-regulated learning strategies. Some other

scholars have investigated how IoT can be exploited to augment learning experiences

(Pei, Wang, Wang, & Li, 2013). All in all, the above-mentioned frameworks are ecosys-

tems based on Smart Education (Lee, Zo, & Lee, 2014), wearable IoT devices in STEM

education (Minerva, Biru, & Rotondi, 2015), and Computational Thinking (Wing,

2006).

Notable STEM education initiatives and learning ecosystems that took place over

the past decade (Zhu, Yu, & Riezebos, 2016) are the Malaysian Smart School Im-

plementation Plan (Malaysia), Intelligent Nation Master Plan (Singapore), Smart,

multi-disciplinary student-centric education system (Australia), SMART (South

Korea), New York’s Smart School (United States), SysTec (Finland) or Mohammed

Bin Rashid Smart Learning Program (United Arab Emirates). However, most of

them either summarize helpful guidelines and considerations for the design of

smart learning environments or have been carried out on a pilot scale within few

educational institutions.

Alternatively, this study aims at constructing a generalizable large-scale smart learn-

ing ecosystem that involves effective and efficient support (e.g., guidance, feedback, or

tools) in the context of children and adolescent STEM education. Our framework is de-

signed to foster critical thinking and problem solving by means of “Data-driven Think-

ing”. In a nutshell, our smart learning ecosystem i) promotes STEM education and

Data-driven Thinking in a student-friendly manner with emphasis on collaborative and

experiential learning; ii) integrates various stakeholders (such as pedagogical institutes,

educators, funding bodies or research agencies) for a large-scale deployment, and; 3) is

based on a wide range of (flexible) services and components, ranging from cloud com-

puting to IoT devices, design of experiments and to analytic platforms. Moreover, we

present a case study of about 100,000 students from 196 educational institutions (pri-

mary, secondary and pre-university) who participated in the Singapore’s National Sci-

ence Experiment (NSE) over the period 2015–2017. The NSE initiative adopted our

smart learning ecosystem with the aim of delivering Data-driven Thinking and educat-

ing children and adolescent students to be globally aware of STEM subjects. NSE is not

only the largest IoT initiative worldwide to expose young students to environmental

and mobility data but also to spur interest in STEM subjects.

Background
Smart education and wearable IoT devices

The concept of Smart Education is based on smart learning through, but not limited

to, IoT devices and other Information and Communication Technologies (ICT), and it

is closely related to the literature on Smart Cities (Lee, Zo, & Lee, 2014). More
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precisely, there are three main dimensions in Smart Education, namely, educational

outcomes, ICT and organization.

Educational outcome is the most important dimension as it is the purpose of students

upon which the smart education program is built. Whether the desired outcomes relate

to the development of cognitive skills (cognitive self-organization, system thinking, lo-

gical and analytical thinking, etc.), digital literacy or smart life skills, pedagogical ap-

proaches should be carefully adopted. ICT and the technological architecture around it

create flexible tools and well-adapted educational opportunities for learning. With the

goal of enabling integrity, interactivity, social interaction tools and mobility, ICT blends

elements of hardware, software and networks together with digital sensors and smart

devices (Lara & Labrador, 2013). The organizational dimension comprises educational

programs, forms of learning and principles of teaching (Tikhomirov, Dneprovskaya, &

Yankovskaya, 2015).

Computational Thinking and Data-driven Thinking

The seminal paper of Wing (2006) introduced the concept of Computational Thinking

as a universally applicable attitude and skill set everyone should ideally learn and use.

In her work, Jeannette Wing stressed the importance of such mindset to be developed

in children for an effective learning in STEM education. Computational Thinking can

be summarized as the thought process of formulating problems and their solutions so

that they are represented in a form that can be effectively carried out by an

information-processing agent. However, Grover and Pea (2013) highlight the defin-

itional confusion concerning the term. This is, there is a number of perspectives and

evolving definitions of Computational Thinking, together with a mix of different envi-

ronments and tools believed to promote the above-mentioned mindset in the educa-

tional space. Data-driven Thinking is closely related to Computational Thinking as

operations on data are expected to be computationally meaningful. Nevertheless, Data-

driven Thinking refers to the thought process of addressing a problem (e.g., situation)

and proposing solutions (e.g., actions) than can be efficiently formulated and backed by

data (Tunçer, Benita, & Scandola, 2019). We also believe Data-driven Thinking to be

an emerging trend within STEM education imposed by the ever-increasing ubiquitous

use of data-driven processes in our society.

The instructional design for Data-driven Thinking in STEM education

Project-based learning and collaborative learning have been shown to be effective strat-

egies to engage young students in STEM education (Kelley & Knowles, 2016). Although

there are many student-centred teaching and learning approaches, project-oriented

problem-based learning is more useful in the context of delivering Data-driven Think-

ing in STEM education (Boss & Krauss, 2014). Project-oriented problem-based learning

is one type of experiential learning (Kolb, 2014) with emphasis to transition students

from passive observers to active participants. These experiential activities: (i) motivate

and increase commitment among students; (ii) are problem-oriented and not subject-

oriented; (iii) are based on learning process and methodologies designed to find solu-

tions rather than recall knowledge, and; (iv) promote team work, social and communi-

cation skills. Particularly, collaborative learning (e.g., working in groups or teams) plays
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a key role in the instructional design as not only supports in- and out-of-school learn-

ing but also offers students a set of skills (negotiation, organization, leadership, man-

agement, etc.) needed for twenty-first century workers in STEM areas (Morrison, Roth

McDuffie, & French, 2015).

Lastly, when the learning approach utilizes IoT devices and other assistive technolo-

gies, educational gaming environments are believed to have a unique ability to display

information and knowledge. They are immersive and fun environments allowing freely

interactions with little or no consequence. Recent research has revealed the potentially

positive impact of gaming experience itself on STEM education among youth (Shank &

Cotten, 2014; Sherry, 2015). Some (Meluso, Zheng, Spires, & Lester, 2012) argue that

game-based learning provides intrinsically motivating environments enhancing STEM

education. Some others (Aguilar, Holman, & Fishman, 2018) have shown they are cost-

effective solutions at imparting desirable attributes (communication skills, adaptability

or resourcefulness) which could be important for success in STEM related job

environments.

A smart learning ecosystem for enabling Data-driven Thinking in STEM
education
Stakeholders

By engaging stakeholders in the various stages of the educational initiative, the pro-

posed framework is tasked to establish, organize, operate and maintain a smart learning

ecosystem that promotes Data-driven Thinking in STEM. Our framework permits chil-

dren and adolescent students to explore and experiment with data. It offers unique ex-

periences enabling new perspectives, and, it provides opportunities to collaborate with

others for their learning.

Figure 1 displays the stakeholders playing relevant roles in the development of the

smart learning ecosystem. Schools, students, and teachers represent end users; thus,

Fig. 1 Stakeholders in the smart learning ecosystem that delivers Data-driven Thinking in STEM education
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they are grouped together into the schema classification. Government agencies design

and implement guidelines for the management, interaction and communication of edu-

cational institutes. Funding agencies look closely at the goals of educational projects

and set stringent constraints on budget availability. Funding agencies and government

institutions are represented in stand-alone hexagons as they are not always related in-

stitutions. It is expected that funding resources (or part of it) might come from private

or non-governmental organizations. Finally, researchers and developers, pedagogical in-

stitutes, and service providers represent main operators of the smart learning ecosys-

tem. These three partners are linked together as they build, execute and maintain

ecosystem’s components.

Government agencies

Dialogue and exchange between educational leaders and policy personnel is the starting

point in drawing smart learning programs. Local government authorities exert firm

controls and can support STEM initiatives. Furthermore, in countries like China, India,

United States or Russia, policy actions promoting influx and growth of STEM work-

force in strategic areas have been taken for decades (Hira, 2010).

Funding agencies

After educational outcomes are clearly set out, funding provided by different entities,

including government agencies, professional organizations, industries, and education

institutions would help ensure meeting STEM program’s goals and objectives. The

process is competitive, and it is important that the smart learning project aligns with

the funding agency’s development agenda (Li et al., 2020).

Pedagogical institutes

Teaching and learning specialists shall have a major role in curating the structure and

content of ecosystem. The specific responsibilities of pedagogical institutes include the

following: designing, supervising and conducting learning activities, and; developing

Data-driven Thinking-related curriculum pedagogical content knowledge and materials

(e.g., blogs, websites, teaching materials, etc.). Additional tasks for these entities could

be communicating and collaborating with software developers and content creation

teams to ensure learning objectives remain consistent. Pedagogical institutes should

also design, explore, propose and support the assessment of learning outcomes.

Schools, teachers and students

Schools serve as the physical and institutional backbone of the smart learning initiative.

Schools’ facilities represent the reference location for teacher-student interaction. Thus,

a smart learning ecosystem can take advantage of existing school’s physical IT re-

sources and physical infrastructures such as laboratories, classrooms, and ICT infra-

structure (the availability and quality of hardware, networks and connectivity within the

school). With respect to teachers, they may require additional training on STEM-

related challenges to deal with the adoption of the smart learning initiative. Teachers

should work together with pedagogical institutes in actively engaged participatory activ-

ities tied to context-dependent learning needs.

Benita et al. Smart Learning Environments            (2021) 8:11 Page 5 of 20



Researchers and developers

They support students in their Data-driven Thinking endeavors by developing digital

functionalities of the smart learning environment. The architecture and technology

components that researcher and developer teams have to deal with are: (i) sensors and

other sources of quality data; (ii) IoT cloud infrastructure, and; (iii) data processing and

visualization functions (e.g., gamification). The next section elaborates the interactions

of these three components.

Service providers

They are all those entities which are essential for maintaining operations of in- and

out-of-school learning activities. In a simple manner, we can distinguish between basic

services (such as those involving logistic), resource management, public relations, and

communications.

Data-driven Thinking in STEM education
Our ecosystem is specially designed for learning through STEM-based Data-driven

Thinking. It is built upon project-oriented problem-based learning and collaborative

learning. Student’s journey through Data-driven Thinking is illustrated in Fig. 2 and the

main stages of the learning process can be summarized as follows:

(i) Definition of research question and hypothesis formulation. To develop cognitive

skills (cognitive logical and analytical thinking, see Wing (2006) and Grover and

Pea (2013)) and get comprehensive insight into the usefulness of data to draw

effective problem solutions.

(ii) Data collection from internal (smart learning ecosystem) and/or external sources

(public databases, repositories, social media, etc.).

(iii)Data analysis and processing. Manual data manipulation (by students) and

automated processing happening at cloud-level (by researchers and developers, see

Fig. 1).

(iv)Data visualization. To transform text-based data into visually stimulating 2D or 3D

charts, maps, graphs, or networks (Benita et al., 2020). Patterns, trends, and

Fig. 2 Data-driven Thinking and user journey
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correlations can be distinguished and characterized with effective visualization

techniques. Moreover, gaming environments can provide students with a diverse

set of cognitive skills such as spatial skills or generating and manipulating mental

representation of objects (Shank & Cotten, 2014; Sherry, 2015).

(v) Summary report. Where children and adolescent students can elaborate on

important discovered insights and results. Here, students must explain and show

how data served to test and validate their hypotheses.

The National Science Experiment as case study
General overview

The NSE was brought to life to instil a passion for STEM in young Singaporeans. This

smart learning initiative involved more than 90,000 students from primary school (ages

7 to 12), secondary school (13 to 16), and pre-university (17 and 18) from 129 different

schools around the country. To expose children and adolescent students to real-world

science while encouraging them to think and work with the mindset of a STEM, it was

adopted a Data-driven Thinking approach. Learning activities of the NSE journey, la-

belled as “Experiments”, were designed to guide users (e.g., schools, teachers and stu-

dents from Fig. 1) across pre-selected tasks (designed by pedagogical institutes) while

adopting a data-driven perspective. NSE offered two main types of experiential learning,

namely: Data Collection and Big Data Challenge.

Data collection

It promoted literacy practices for conceptual and cognitive learning, and comprehen-

sion monitoring. This type of Experiment had strong emphasis on learning activities

that involved the use of interactive data and its intuitive understanding. Data Collection

did not require advanced STEM coursework on the one hand, and did not develop

non-cognitive skills such as collaboration or problem solving on the other. Support and

extra duties required from teachers were minimal and the duration of learning experi-

ences was 1 week.

Big data challenge

Here, children and adolescent students experienced the whole cycle of Data-driven

Thinking depicted in Fig. 2. It was designed into a collaborative and project-oriented

problem based-learning. The exposure of students to Data-driven Thinking was higher

but the total number of participants was lower than that envisioned in Data Collection.

This, with the intention to guarantee effective experiential learning. During Big Data

Challenge, teachers and other mentoring figures actively engaged students in learning

through group and project work. Finally, students conducted this learning activity in a

period of about 1 month.

The smart learning ecosystem

NSE was conceived and shaped accordingly with the third Master Plan (MOE, 2008)

which aims to enrich and transform the learning environment to enable students to de-

velop a critical digital expertise. NSE’s educational content was designed in such a way
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that learning activities were embedded in extra-curricular modules, minimizing inter-

ference with any scheduled school activities.

To do so, the major government agency (Fig. 1) involved during the implementation

of the smart learning initiative was the Ministry of Education of Singapore who pro-

vided main linkages between NSE developers and educational institutes. In the same

vein, the key funding agency was the National Research Foundation of Singapore, which

is the authority that sets national directions for research and development by designing

policies, plans, and strategies for research and innovation. In regard with pedagogical

institutes, STEM Inc. helped delineating the learning agenda in form of Experiments.

Partnerships with mentors from industry were also offered to schools, classes, and stu-

dents with less experience in STEM subjects. The mentoring program helped bridging

the gap between older and younger students.

The backbone of NSE’s smart learning ecosystem was built by researchers and devel-

opers. It was based on three ad hoc components: (i) SENSg, a wearable IoT device de-

veloped by Singapore University of Technology and Design (SUTD); (ii) An IoT cloud

infrastructure (designed and operated by SUTD), and; (iii) ModStore, a web-based ana-

lytic tool for data analysis and visualization, implemented by the Singapore’s Institute

of High Performance Computing (IHPC).

SENSg

Its name stands for “Sense Singapore” and it can store multiple environmental, motion

and location data at different sampling rates (Wilhelm et al., 2016). The Mode A (Mode

B) of SENSg records raw data at rates of 1 reading every 13 s (5 readings every second).

Using different sampling rates in delivering Data-driven Thinking in STEM education

is important because higher sampling rates add computational and cognitive complex-

ity (He, Ji, & Bobbie, 2017), thus, allowing elaborated designs of the learning environ-

ment. With a mass production of 50,000 SENSg devices, NSE simultaneously engaged a

large number of schools, teachers and students. The top part of Table 1 reports the pa-

rameters and data recorded by SENSg (Fig. 3).

IoT infrastructure

After the data was collected, this was pushed and stored into NSE cloud servers. The

infrastructure was designed to work at any time with all 50,000 SENSg devices active at

once. Furthermore, the set up ensured out-of-school and off-line functionalities, e.g.,

students collecting data at any time in any place. We refer the interested reader to

Wilhelm et al. (2016) for more details. After SENSg automatically pushed locally stored

readings into main servers (once they went back to school), students had access to raw

and processed data as shown in Table 1. Position refers to latitude and longitude geo-

graphic coordinates with the corresponding timestamp (developing spatial skills).

Happy moments let students keep track of their moods (Benita, Bansal, & Tunçer,

2019). Transportation mode (Monnot et al., 2016; Monnot, Benita, & Piliouras, 2017;

Wilhelm et al., 2017) distinguished between different means of transportation chosen

by the student. The number of steps reported daily steps taken. CO2 emissions esti-

mated daily emissions of carbon dioxide from transport and air conditioning usage

(Happle, Wilhelm, Fonseca, & Schlueter, 2017). The above-mentioned processed data
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allowed students to be aware of energy saving and sustainable mobility. Additional ele-

ments of the IoT infrastructure were a website and a web-app (Fig. 4). The website

showed guides, media and overall statistics while the web-app enabled interaction of

students with SENSg (e.g., switching from Mode A to Mode B, or visualizing real-time

readings). Additionally, by applying games as learning environments, the web-app was

equipped with mini-games to foster the engagement of the youngest students.

Analytic platform: ModStore

It permitted students access and download their own data. It facilitated processing and

data manipulation as it enabled students to perform analytical operations via simple

Table 1 List of sensors embedded in the SENSg device and other processed data

Sensor Range Accuracy Units

Raw data

Accelerometer ± 2 g ± 16 g ±(0.08–0.15) g

Gyroscope ± 250 ± 2000 0.06 deg/sec

Magnetometer ± 4800 N/A μT

Light Intensity 0.165 to 100 k N/A lux

Sound Pressure 30 to 130 SNR:63 dB

Relative Humidity 0 to 100 ±3 %

Temperature −10 to + 85 ±0.3 ° C

Pressure 300 to 1100 ±0.12 hPa

IR Temperature −40 to + 125 ±3 ° C

Button-press-event (happy moments) – – Timestamp

Processed data

Position – ±100 m

Transportation mode – 85 %

Number of steps – – Integer

Transport/air conditioning CO2 emissions – – Float

Access Point MAC addresses – – –

Fig. 3 Sensor device and students during NSE
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algorithms and pseudo-code. The analytic platform was customized to follow relevant

Ministry of Education math syllabus (Zhang et al., 2017). The engine is a browser-

based software that allowed for the design of workflows (Fig. 5) in a drag-and-drop

fashion (e.g., development of critical thinking, computational thinking and design

thinking as detailed in Kitsantas and Dabbagh (2012), Wing (2006) or Grover and Pea

(2013)).

Results
Table 2 shows the “big” numbers of schools and students involved in the NSE smart

learning initiative. The first NSE Experiment was launched in the last quarter of 2015

in the form of Data Collection 1. This stage was a major event for validating collabora-

tions between stakeholders and functionality of the smart learning ecosystem when

used by a large number of children and adolescent students. The engagement outputs

of this stage were mainly measured by the total number of website visits and web-app

users. Data Collection 2 was carried out during 2016 and promoted active learning by

Fig. 4 Dashboard and visualization page from the NSE web-app. a Dashboard of SENSg web-app displaying
environmental and mobility data collected by the student. b Map with geo-located data points (top) and time
series of a chosen parameter (bottom). Happy Moments are also shown with emojis characters, with the
possibilities of adding comments to every single event (Benita et al., 2020)
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including the happy button which students were required to press whenever they felt

happy.

Big Data Challenge 1 connected students with scientists from researcher and devel-

oper institutions to come up with innovative STEM applications by using the data col-

lected during Data Collection 2. The connection between Data Collection periods and

Big Data Challenges is that the former exposed students to get to track their carbon

footprint, travel mobility patterns or amount of time they spend indoors/outdoors.

Through Data Collection, students learned about IoT and Big Data while teachers were

able to leverage the data to develop interesting physics lessons and teach concepts such

as humidity, linear kinematics and pendulum motion through hypotheses testing and

hands-on experiments.

The Big Data Challenges, gave students the freedom to create their own set of experi-

ments, only constrained by the limitations of the SENSg device. Data Collections served

as a step-stone to further exposing them to Data-driven Thinking through Big Data

Challenges. In this stage teams of students (e.g., collaborative learning) were required

to state a research question based on their own (schools’) data, perform analysis (using

ModStore tool), develop and test hypotheses, draw meaningful insights, and to present

their analyses in simple terms. Additionally, the instructional design of Big Data Chal-

lenge that included on-line tools ensured that participants who do not actively take part

Fig. 5 ModStore (Zhang et al., 2017). a Compositor to create workflows. b Most often used transport mode
by distance traveled
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in the competition but stayed passive content consumers (so-called “lurkers”) could still

benefit from participation (Ebner & Holzinger, 2005). In total, 58 teams from 24

schools participated in this challenge under two categories, which were Secondary

schools and Pre-university, see Table 2. Among the addressed topics by the winners of

this challenge in the Secondary schools’ category, we had: patterns of school commute,

sleep and study; negative effects of transport and air-conditioning usage on carbon

footprint; or the trade-off between schooling hours and sufficient duration of sleep.

The topics explored by Pre-university students were more elaborated. For example, the

importance of subjective well-being (i.e., happy moments) for mental and physical

health; locations and attributes of most visited places; or the impact of traffic conges-

tion on school starting times.

The main difference between Big Data Challenge 1 and 2 is that in the latter, teams

of students freely designed their own experiments (Fig. 6). Students were asked to think

and formulate the hypothesis they wanted to test before moving to data collection

through SENSg device or external datasets. Mentors from large companies such as

IBM, Microsoft, Fujitsu, Delta Electronics, SAP, among others, were actively involved

during the Big Data Challenge 2. Among the vast set of topics explored by students,

winning teams investigated issues related to in- and out-of-school study patterns, CO2

emissions, preferences for physical activities, horizontal and vertical mobility, distribu-

tion of sleeping hours, comfort in the classrooms or noise propagation.

Final reports, column “Submitted Reports” in Table 2, were evaluated by experts dur-

ing each Big Data Challenge, and competition-like setups of the Experiment were orga-

nized. The competition included prizes and awards to motivate students to actively

participate and perform at their best. We refer the reader to the Appendix for details

about differences in Data-driving Thinking gains derived from both Big Data

Challenges.

Table 2 Participation of students during NSE

Experiment Schools Students Website visits Web-app Users

Data Collection 1 129 Total 42,361 Total 18,633 13,926

67 (51.9%) Pri 23,691 (55.9%)

55 (42.7) Sec 16,993 (40.1%)

7 (5.4%) Pre-u 1,677 (4%)

Data Collection 2 93 Total 47,833 Total 23,307 16,265

41 (44%) Pri 13,364 (27.9%)

37 (39.8%) Sec 13,209 (27.6%)

15 (16.2%) Pre-u 21,260 (44.5%)

Teams Submitted Reports

Big Data Challenge 1 24 Total 235 Total 58 44

13 (52%) Sec 114 (48%)

12 (48%) Pre-u 121 (52%)

Big Data Challenge 2 45 Total 414 Total 91 62

34 (76%) Sec 280 (68%)

11 (24%) Pre-u 134 (32%)

Primary school (Pri), Secondary school (Sec) and Pre-university (Pre-u)
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Discussion
Concluding remarks

In this work, we have presented a general and scalable framework for designing, main-

taining, and operating a smart learning ecosystem in STEM education. In doing so, all

key stakeholders (educational institutions, pedagogical institutes, funding and govern-

ment agencies, service providers, and researchers and developers) need to collaborate

and concentrate efforts to ensure the success of the learning ecosystem. Moreover, our

framework is characterized by Data-driven Thinking in the education process. To as-

sure learning outcomes, elements of project-oriented problem-based learning, collab-

orative learning, experiential learning and gaming environments are adopted as core

learning activities (Kolb, 2014; Morrison, Roth McDuffie, & French, 2015). Similarly,

data plays a significant role in our learning framework and a plethora of (flexible) com-

ponents are introduced, such as cloud computing, IoT devices or analytic platforms.

We believe Data-driven Thinking will play a significant role in the future development

of education systems (Coccoli, Guercio, Maresca, & Stanganelli, 2014; Grover & Pea,

2013; Ning & Hu, 2012; Tunçer, Benita, & Scandola, 2019), therefore, this paper con-

tributes to the current understanding of the effective and efficient utilization of infor-

mation technologies in the development of STEM education.

We have also shown through a case study how this smart learning ecosystem can be

effective in practice. Our work describes the experience of Singapore’s National Science

Experiment, the world’s largest Smart Education initiative where thousands of students

and hundreds of teachers and staff got involved in an ecosystem that enabled Data-

driven Thinking. Although the case study is based on Singapore, the proposed learning

ecosystem and findings could have broad implications for other large cities with Smart

Education initiatives worldwide. NSE is closely related to recent studies emerged from

a variety of fields in STEM education. Using smartphones Cardone, Cirri, Corradi, and

Foschini (2014) involved 300 students during 1 year in crowd sensing campaigns (Parti-

cipAct) to incentive users to foster their participation in Smart Cities. In ParticipAct,

students could voluntary decide to either accept or refuse to do requested activities,

finding that only a minor number of students tried to provide fake data. Although the

Fig. 6 Representation of students’ performed activities during Big Data Challenge 2
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scope of the project was not directly based on educational outcomes, ParticipAct aligns

with NSE in the aim to encourage residents to voluntary generate and provide data

which can be of interest for public policymakers to optimize the available resources. In

Hotaling (2009), the author carried out a three-years project (SENSE IT) with the goal

of providing an infrastructure for teachers and students to design, implement and test

student developed sensors. Implemented with 3000 high school and middle school stu-

dents, SENSE IT challenged them to design, test, deploy and communicate with a set

of (air temperature, conductivity, turbidity, and hydrostatic pressure) sensors. SENSE

IT is probably the closest Smart Education initiative to NSE due to the aim of promot-

ing STEM education in schools by offering an innovative learning experience through

sensors. In the context of Smart Classroom, Gligorić, Uzelac, and Krco (2012) devel-

oped a real-time feedback on lecture quality tool to explore listener’s behavior in an in-

telligent environment. The use of IoT devices capturing video, sound, and infrared

allowed the authors to improve classroom comfort levels. However, contrary to NSE,

students were not actively involved during the experiment.

In nations lagging behind other countries in the fields of STEM, lessons learned from

NSE, particularly the adoption of Data-driven Thinking, could provide a valuable know-

ledge base for the creation of (scalable) high-quality youth development programs.

Children and adolescent students could have the opportunity to engage in scientific ex-

ploration and work together to build the next generation of scientists, engineers, and

mathematicians. Methodologically speaking, our approach is opposite to traditional

teaching model, which focuses on practice and remembering facts and procedures. On

the other side of the spectrum, Data-driven Thinking encourages thinking and

problem-solving as students can learn the importance of STEM subjects in everyday

life, students’ interests, and concerns. On the basis of our findings, our recommenda-

tion for policy development is to focus on giving greater recognition to young students’

capabilities to engage with processes associated with the generation of ideas. Curricu-

lum content should also emphasise the relevance of Project-oriented problem-based

learning. Finally encouraging the generation, rather than the evaluation of ideas is way

to foster STEM educational activities.

Opportunities for STEM education in the face of COVID-19

The unprecedented times of COVID-19 have highlighted a new global need for remote

learning in STEM areas where distance learning was not previously preferred. Educators

have been forced to adapt course activities to accommodate online learning. The need of

funding to acquire instructional materials, difficulties to (remotely) enforce assessment re-

strictions or limitations on the nature of the available e-learning tools (such as lifetime,

functionality across different operating systems, efficiency, efficacy or satisfaction) are

among the challenges faced by educational institutions and learners (Sintema, 2020; Van

Nuland, Hall, & Langley, 2020). Our proposed smart learning framework may be helpful,

if not essential, in creating additional remote course activities that ensure children and ad-

olescents’ engagement. Moreover, our educational framework has been shown to ensure

large-scale dissemination of Data-driven Thinking with tens of thousands of students. We

have identified critical stakeholders together with their expected roles. Depending on the

needs of the learners, educators and institutions, our ecosystem presents flexible learning

Benita et al. Smart Learning Environments            (2021) 8:11 Page 14 of 20



opportunities and enables learners to learn synchronously (e.g., Data Collection) or asyn-

chronously (e.g., Big Data Challenge) from a distance.

Appendix
Competition

Big Data Challenge 1

Each team completing the Experiment had to prepare a final report and the submission

was done via the EasyChair platform, a conference management system, to facilitate the

evaluation procedures. Each report was evaluated by three experts from the operators

of the NSE ecosystem (pedagogical institutes, service providers, researchers, and devel-

opers, see Fig. 1). The evaluation criteria included: (1) Innovation (novelty and/or ori-

ginality); (2) Accuracy (error analysis); (3) Impact (findings and implications), and; (4)

Presentation (quality of text and visualizations).

Big Data Challenge 2

Similar to Big Data Challenge 1, final reports were evaluated by three experts from the

operators of the NSE ecosystem using the following criteria: (1) Research (problem

identification, sources of information and problem analysis); (2) Solution (innovation,

impact and technical accuracy); (3) Experiment (experimental plan, execution and error

analysis), and; (4) Presentation (quality of text, quality of the visualizations and presen-

tation effectiveness). Note that these judging criteria differs from the one used in Big

Data Challenge 1 due to at this stage students were challenged to properly designed

and conducted an experiment.

Differences in Data-driving Thinking gains

A brief exploratory and inferential analysis of the student’s performance derived from

their reports is presented in this section. The goal is to identify potential differences in

learning outcomes during Big Data Challenge 1 and 2. The evaluation of Big Data Chal-

lenge 1 was carried out through a 100 points scale where each criterion (Innovation, Ac-

curacy, Impact, and Presentation) was scored from 0 to 25. Report’s evaluation during the

Big Data Challenge 2, in contrast, was done through a 5-point Likert scale (0–4), where

each criterion (Research, Solution, Experiment, Presentation) was evaluated by 3 items de-

scribed in the previous section. Although the scoring rubric was different in both years, it

is possible to analyze differences on performance using non-parametric tests.

On the one hand, the Kruskal-Wallis post-hoc test for pairwise multiple comparisons

allows us to identify factors that influence differences in scores. More precisely, we are

interested in the test for each category (Secondary and Pre-university) H0(A): the evalu-

ation criterioni does not make a significant difference between the scores resulted from

the reports. This is, the test allows us to explore if teams within the same category per-

formed better/worse in a given criterioni. On the other hand, the Mann-Whitney U

null hypothesis stipulates that two groups came from the same population. In other

terms, we would like to test H0(B): the distribution of scores of criterioni in Secondary

school and Pre-university College categories are equal. The test helps us to understand

if there is a differentiated effect in the learning process due to the student’s age.

Tables 3 and 4 summarize the findings, so that:
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� Big Data Challenge 1.

– H0(A): Applying the Kruskal-Wallis-post-hoc tests (after Nemenyi) shows there

is no significant difference between the scores of Innovation, Accuracy, Impact

and Presentation. This is true for both categories, Secondary school, and Pre-

university.

– H0(B): Applying the Mann-Mann-Whitney U test shows there is significant dif-

ference in scores of Innovation (p-value = 0.003) and Impact (p-value = 0.023) be-

tween Secondary school and Pre-university categories.

� Big Data Challenge 2.

– H0(A): Applying the Kruskal-Wallis-post-hoc tests (after Nemenyi) shows there

is significant difference in scores of the Solution criterion with respect to the rest

of the criteria. This is true for both categories, Secondary school, and Pre-

university.

– H0(B): Applying the Mann-Mann-Whitney U test shows there is no significant

difference in criteria scores between Secondary school and Pre-university.

The exploratory analysis suggests that, during the Big Data Challenge 1, where stu-

dents were limited to only perform analytics given fixed datasets and computational

tools, teams of students within the same category (e.g., Secondary school or Pre-

university) tended to achieve similar scores across all four criteria. However, teams of

students from Secondary school category tended to perform lower in Innovation and

Impact compared to Pre-university teams. The finding is expected, as Data-driven

Thinking process was not yet met during the Big Data Challenge 1. Thus, more experi-

enced teams of students tended to perform better.

Conversely, during Big Data Challenge 2 a differentiated performance on Solution

criterion compared with Research, Experiment, and Presentation is found. In other

words, both type of teams, Secondary school, and Pre-university, showed limitations in

achieving promising insights derived from their experiments. This could be explained

by the fact that Solutions criterion evaluates the last stage of the Data-driven Thinking,

see Fig. 6, which may be the most difficult step to achieve. Moreover, most of the teams

expressed a lack of time (about 3 weeks duration of Big Data Challenge 2) to obtain

concluding findings. Some other teams reported issues during the data collection, af-

fecting the quality of their final results whereas others informed that their dataset was

too small to come up with concluding remarks. Interestingly, after delivering Data-

driven Thinking experiences, there is no statistical evidence suggesting differences in

the distribution of the criteria scores when comparing Secondary school vs Pre-

university. In other words, both types of teams tended to perform equally well for any

evaluated criteria. The finding is interesting as it shows that younger students tended

to perform equally well as older students once the Data-driven Thinking framework

was implemented.

Acknowledgements
The authors would like to thank the National Science Experiment team at SUTD for their help: Nils Ole Tippenhauer,
Francesco Scandola, Sarah Nadiawati, Garvit Bansal and Hugh Tay Keng Liang.

Authors’ contributions
E. W. and B. T. devised the project, the main conceptual ideas and proof outline. F. B. and D. V. were involved in
planning, supervised the work, drafted the manuscript and designed the figures. All authors discussed the results and
commented on the manuscript. The author(s) read and approved the final manuscript.

Benita et al. Smart Learning Environments            (2021) 8:11 Page 18 of 20



Funding
The research leading to these results is supported by funding from the National Research Foundation, Prime Minister’s
Office, Singapore, under its Grant RGNRF1402.

Availability of data and materials
Due to the nature of this research, participants of this study did not agree for their data to be shared publicly, so
supporting data is not available.

Declaration

Competing interests
The authors declare that they have no competing interests.

Received: 12 January 2021 Accepted: 26 April 2021

References
Aguilar, S. J., Holman, C., & Fishman, B. J. (2018). Game-inspired design: Empirical evidence in support of gameful learning

environments. Games and Culture, 13(1), 44–70. https://doi.org/10.1177/1555412015600305.
Benita, F., Bansal, G., & Tunçer, B. (2019). Public spaces and happiness: Evidence from a large-scale field experiment. Health &

Place, 56, 9–18. https://doi.org/10.1016/j.healthplace.2019.01.014.
Benita, F., Perhac, J., Tunçer, B., Burkhard, R., & Schubiger, S. (2020). 3D-4D visualisation of IoT data from Singapore’s National

Science Experiment. Journal of Spatial Science, 1–19. https://doi.org/10.1080/14498596.2020.1726219.
Bielaczyc, K. (2006). Designing social infrastructure: Critical issues in creating learning environments with technology. The

Journal of the Learning Sciences, 15(3), 301–329. https://doi.org/10.1207/s15327809jls1503_1.
Boss, S., & Krauss, J. (2014). Reinventing project-based learning: Your field guide to real-world projects in the digital age, (2nd ed.,

). International Society for Technology in Education.
Buffum, P. S., Martinez-Arocho, A. G., Frankosky, M. H., Rodriguez, F. J., Wiebe, E. N., & Boyer, K. E. (2014). CS principles goes to

middle school: Learning how to teach big data. In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education, (pp. 151–156). ACM.

Cardone, G., Cirri, A., Corradi, A., & Foschini, L. (2014). The participact mobile crowd sensing living lab: The testbed for smart
cities. IEEE Communications Magazine, 52(10), 78–85. https://doi.org/10.1109/MCOM.2014.6917406.

Coccoli, M., Guercio, A., Maresca, P., & Stanganelli, L. (2014). Smarter universities: A vision for the fast changing digital era.
Journal of Visual Languages & Computing, 25(6), 1003–1011. https://doi.org/10.1016/j.jvlc.2014.09.007.

Ebner, M., & Holzinger, A. (2005). Lurking: An underestimated human-computer phenomenon. IEEE MultiMedia, 12(4), 70–75.
https://doi.org/10.1109/MMUL.2005.74.

Fößl, T., Ebner, M., Schön, S., & Holzinger, A. (2016). A field study of a video supported seamless-learning-setting with
elementary learners. Journal of Educational Technology & Society, 19(1), 321–336.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning
increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of
Sciences, 111(23), 8410–8415. https://doi.org/10.1073/pnas.1319030111.

Gligorić, N., Uzelac, A., & Krco, S. (2012). Smart classroom: Real-time feedback on lecture quality. In Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2012 IEEE International Conference on, (pp. 391–394). IEEE.

Grover, S., & Pea, R. (2013). Computational thinking in k–12: A review of the state of the field. Educational Researcher, 42(1),
38–43. https://doi.org/10.3102/0013189X12463051.

Happle, G., Wilhelm, E., Fonseca, J. A., & Schlueter, A. (2017). Determining air-conditioning usage patterns in Singapore from
distributed, portable sensors. Energy Procedia, 122, 313–318. https://doi.org/10.1016/j.egypro.2017.07.328.

He, J. S., Ji, S., & Bobbie, P. O. (2017). Internet of things (IoT)-based learning framework to facilitate stem undergraduate
education. In Proceedings of the SouthEast Conference, (pp. 88–94). ACM.

Hira, R. (2010). US policy and the STEM workforce system. American Behavioral Scientist, 53(7), 949–961. https://doi.org/10.11
77/0002764209356230.

Hotaling, L. (2009). SENSE IT-student enabled network of sensors for the environmental using innovative technology. In
OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges, (pp. 1–4). IEEE.

Ito, M., Soep, E., Kligler-Vilenchik, N., Shresthova, S., Gamber-Thompson, L., & Zimmerman, A. (2015). Learning connected
civics: Narratives, practices, infrastructures. Curriculum Inquiry, 45(1), 10–29. https://doi.org/10.1080/03626784.2014.995063.

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM
Education, 3(1), 1–11.

Kitsantas, A., & Dabbagh, N. (2012). Personal learning environment social media and self-regulated learning: A natural formula
for connecting formal and informal learning. Internet and Higher Education, 15(1), 3–8.

Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. FT press.
Lara, O. D., & Labrador, M. A. (2013). A survey on human activity recognition using wearable sensors. IEEE Communications

Surveys and Tutorials, 15(3),1192–1209. https://doi.org/10.1109/SURV.2012.110112.00192.
Lee, J., Zo, H., & Lee, H. (2014). Smart learning adoption in employees and HRD managers. British Journal of Educational

Technology, 45(6), 1082–1096. https://doi.org/10.1111/bjet.12210.
Li, Y., Wang, K., Xiao, Y., Froyd, J. E., & Nite, S. B. (2020). Research and trends in STEM education: A systematic analysis of

publicly funded projects. International Journal of STEM Education, 7, 1–17.
Meluso, A., Zheng, M., Spires, H. A., & Lester, J. (2012). Enhancing 5th graders’ science content knowledge and self-efficacy

through game-based learning. Computers & Education, 59(2), 497–504. https://doi.org/10.1016/j.compedu.2011.12.019.
Minerva, R., Biru, A., & Rotondi, D. (2015). Towards a definition of the internet of things (IoT). IEEE Internet Initiative, 1, 1–86.
MOE (2008). Masterplan for ICT in education (2009–2014). Ministry of Education (MOE).

Benita et al. Smart Learning Environments            (2021) 8:11 Page 19 of 20

https://doi.org/10.1177/1555412015600305
https://doi.org/10.1016/j.healthplace.2019.01.014
https://doi.org/10.1080/14498596.2020.1726219
https://doi.org/10.1207/s15327809jls1503_1
https://doi.org/10.1109/MCOM.2014.6917406
https://doi.org/10.1016/j.jvlc.2014.09.007
https://doi.org/10.1109/MMUL.2005.74
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1016/j.egypro.2017.07.328
https://doi.org/10.1177/0002764209356230
https://doi.org/10.1177/0002764209356230
https://doi.org/10.1080/03626784.2014.995063
https://doi.org/10.1109/SURV.2012.110112.00192
https://doi.org/10.1111/bjet.12210
https://doi.org/10.1016/j.compedu.2011.12.019


Monnot, B., Benita, F., & Piliouras, G. (2017). Routing games in the wild: Efficiency, equilibration and regret. In International
Conference on Web and Internet Economics, (pp. 340–353). Springer.

Monnot, B., Wilhelm, E., Piliouras, G., Zhou, Y., Dahlmeier, D., Lu, H. Y., & Jin, W. (2016). Inferring activities and optimal trips:
Lessons from Singapore’s National Science Experiment. In Complex Systems Design & Management Asia, (pp. 247–264).
Springer.

Morrison, J., Roth McDuffie, A., & French, B. (2015). Identifying key components of teaching and learning in a STEM school.
School Science and Mathematics, 115(5), 244–255. https://doi.org/10.1111/ssm.12126.

Ning, H., & Hu, S. (2012). Technology classification, industry, and education for future internet of things. International Journal
of Communication Systems, 25(9), 1230–1241. https://doi.org/10.1002/dac.2373.

Pei, X. L., Wang, X., Wang, Y. F., & Li, M. K. (2013). Internet of things based education: Definition, benefits, and challenges. In
Applied Mechanics and Materials, (vol. 411, pp. 2947–2951). Trans Tech Publ.

Shank, D. B., & Cotten, S. R. (2014). Does technology empower urban youth? The relationship of technology use to self-
efficacy. Computers & Education, 70, 184–193. https://doi.org/10.1016/j.compedu.2013.08.018.

Sherry, J. L. (2015). Formative research for STEM educational games. Zeitschrift für Psychologie, 221, 90–97.
Sintema, E. J. (2020). Effect of COVID-19 on the performance of grade 12 students: Implications for STEM education. Eurasia

Journal of Mathematics, Science and Technology Education, 16(7), em1851.
Tikhomirov, V., Dneprovskaya, N., & Yankovskaya, E. (2015). Three dimensions of smart education. In V. L. Uskov, R. Howlett, &

L. Jain (Eds.), Smart education and smart e-Learning. Smart Innovation, systems and technologies, (pp. 47–56). Springer.
Tunçer, B., Benita, F., & Scandola, F. (2019). Data-driven thinking for urban spaces, immediate environment, and body

responses. In Proceedings of the 18th International Conference, CAAD Futures, (pp. 336–348). CAAD Futures.
Van Nuland, S. E., Hall, E., & Langley, N. R. (2020). STEM crisis teaching: Curriculum design with e-learning tools. FASEB

BioAdvances, 2(11), 631–637. https://doi.org/10.1096/fba.2020-00049.
Wilhelm, E., MacKenzie, D., Zhou, Y., Cheah, L., & Tippenhauer, N. O. (2017). Evaluation of transport mode using wearable

sensor data from thousands of students. In Proceedings of the Transportation Research Board 96th Annual Meeting, (pp. 1–
18). Transportation Research Board.

Wilhelm, E., Siby, S., Zhou, Y., Ashok, X. J. S., Jayasuriya, M., Foong, S., … Tippenhauer, N. O. (2016). Wearable environmental
sensors and infrastructure for mobile large-scale urban deployment. IEEE Sensors Journal, 16(22), 8111–8123. https://doi.
org/10.1109/JSEN.2016.2603158.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215.
Zhang, W., Liu, Y., Wang, L., Zhou, J., Du, J., & Goh, R. S. M. (2017). ModStore: An instructional HPC-based platform for National

Science Experiment big Data Challenge. In Cloud Computing Research and Innovation (ICCCRI), 2017 International
Conference on, (pp. 18–22). IEEE.

Zhu, Z. T., Yu, M. H., & Riezebos, P. (2016). A research framework of smart education. Smart Learning Environments, 3(4), 1–17.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Benita et al. Smart Learning Environments            (2021) 8:11 Page 20 of 20

https://doi.org/10.1111/ssm.12126
https://doi.org/10.1002/dac.2373
https://doi.org/10.1016/j.compedu.2013.08.018
https://doi.org/10.1096/fba.2020-00049
https://doi.org/10.1109/JSEN.2016.2603158
https://doi.org/10.1109/JSEN.2016.2603158
https://doi.org/10.1145/1118178.1118215

	Abstract
	Introduction
	Background
	Smart education and wearable IoT devices
	Computational Thinking and Data-driven Thinking
	The instructional design for Data-driven Thinking in STEM education

	A smart learning ecosystem for enabling Data-driven Thinking in STEM education
	Stakeholders
	Government agencies
	Funding agencies
	Pedagogical institutes
	Schools, teachers and students
	Researchers and developers
	Service providers


	Data-driven Thinking in STEM education
	The National Science Experiment as case study
	General overview
	Data collection
	Big data challenge

	The smart learning ecosystem
	SENSg
	IoT infrastructure
	Analytic platform: ModStore


	Results
	Discussion
	Concluding remarks
	Opportunities for STEM education in the face of COVID-19

	Appendix
	Competition
	Big Data Challenge 1
	Big Data Challenge 2

	Differences in Data-driving Thinking gains

	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declaration
	Competing interests
	References
	Publisher’s Note

