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Abstract

Background: Recognizing learners’engagement during learning processes is impor-
tant for providing personalized pedagogical support and preventing dropouts. As
learning processes shift from traditional offline classrooms to distance learning, meth-
ods for automatically identifying engagement levels should be developed.

Objective: This article aims to present a literature review of recent developments in
automatic engagement estimation, including engagement definitions, datasets, and
machine learning-based methods for automation estimation. The information, figures,
and tables presented in this review aim at providing new researchers with insight on
automatic engagement estimation to enhance smart learning with automatic engage-

Advanced Institute of Science
and Technology (JAIST), Nomi,
Japan Methods: A literature search was carried out using Scopus, Mendeley references, the

IEEE Xplore digital library, and ScienceDirect following the four phases of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA): identification,
screening, eligibility, and inclusion. The selected studies included research articles pub-
lished between 2010 and 2022 that focused on three research questions (RQs) related
to the engagement definitions, datasets, and methods used in the literature. The article
selection excluded books, magazines, news articles, and posters.

ment recognition methods.

Results: Forty-seven articles were selected to address the RQs and discuss engage-
ment definitions, datasets, and methods. First, we introduce a clear taxonomy that
defines engagement according to different types and the components used to
measure it. Guided by this taxonomy, we reviewed the engagement types defined in
the selected articles, with emotional engagement (n = 40; 65.57%) measured by affec-
tive cues appearing most often (n = 38; 57.58%). Then, we reviewed engagement and
engagement-related datasets in the literature, with most studies assessing engage-
ment with external observations (n = 20; 43.48%) and self-reported measures (n =

9; 19.57%). Finally, we summarized machine learning (ML)-based methods, including
deep learning, used in the literature.

Conclusions: This review examines engagement definitions, datasets and ML-based
methods from forty-seven selected articles. A taxonomy and three tables are presented
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to address three RQs and provide researchers in this field with guidance on enhancing
smart learning with automatic engagement recognition. However, several key chal-
lenges remain, including cognitive and personalized engagement and ML issues that
may affect real-world implementations.

Keywords: Engagement estimation, Engagement definitions, Engagement datasets,
Engagement methods

Introduction

Recognizing learners’ engagement can provide insight for enhancing learner-educator,
learner-learning material, and learner-learner interactions (Sumer et al., 2021). Learner
engagement has been found to be positively correlated with academic achievement (Lei
et al., 2018), and higher engagement levels lead to better learning outcomes (Ponitz
et al,, 2009). A good engagement state is associated with curiosity, interest, optimism,
and passion, which enhances motivation to continue learning and pursue achievement
(Fredricks et al., 2004). Therefore, engagement is an essential component in the learning
process that may reduce dropout rates, increase productivity and learning, and provide
insights for improving course content and lecture plans (Alexander et al., 1997; Fredricks
et al., 2004).

Research on engagement can be considered from two perspectives (Leite et al., 2015).
Robot/computers/agents can be viewed as supports for increasing human engagement
(Yun et al., 2012; Hall et al., 2014; Rich et al., 2010; Sanghvi et al., 2011) or as tools for
automatically estimating human engagement (McDuff et al., 2012; Whitehill et al., 2014;
Nakano and Ishii 2010; Castellano et al., 2009; Minsu et al., 2013; Castellano et al., 2012).
In this article, we mainly focus on the second perspective.

Moreover, engagement estimation methods can be divided into three categories: man-
ual, semiautomatic, and automatic (Dewan et al., 2019). In traditional offline classrooms,
educators can recognize engagement levels directly or use manual observation checklists
and rating scales. In contrast, in distance learning settings, learner engagement is more
difficult to estimate due to limitations with learner-educator interactions. Therefore, a
smart learning setting that allows automatic engagement estimation is one of potential
solutions for addressing this limitation.

Recent improvements in computational hardware and software that support classic
machine learning and deep neural networks have led to promising research on automatic
engagement estimation (Gudi et al., 2015; Chaouachi et al., 2010). In particular, with the
outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), work in
this field has increased considerably (Abdellaoui et al., 2020). Automatic engagement has
become an important topic in several fields, such as human interaction research, includ-
ing human-human interactions (HHIs) (Chatterjee et al., 2021), human-robot interac-
tions (HRIs) (Yun et al., 2012; Rudovic et al., 2018b; Yue et al., 2019; Yun et al., 2020),
human-computer interactions (HCIs) (Dubovi 2022; Monkaresi et al., 2017; Psaltis et al.,
2018), and embodied conversational agents (ECAs) (AlZoubi et al., 2012). Furthermore,
classroom applications are critical for improving smart education (Zaletelj and Kosir
2017; Sumer et al., 2021; Ashwin and Guddeti 2020b).

Several automatic engagement estimation methods have been proposed in recent
years. Among them, computer vision-based techniques are the most popular because
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nonverbal behaviours (including head motion, eye gaze, and body pose) play key roles in
determining engagement levels (Ben-Youssef et al., 2019). In addition, computer vision-
based approaches offer unobtrusive assessments, similar to classroom situations where
teachers observe learners without interrupting their activities. These methods are also
cost-effective and usable in the near term (D’Mello et al., 2017). Therefore, in this arti-
cle, we conduct a systematic review on computer vision-based automatic engagement
estimation methods that utilize appearance-based cues (such as videos or images).

Some physiological information-based methods that have received considerable
attention in automatic engagement estimation research are also discussed. The devel-
opment of cost-effective biosignal hardware, such as electroencephalogram (EEG),
electrocardiogram (ECG), facial electromyogram (fEMG), and galvanic skin response
(GSR), has provided simple and easy-to-use solutions (Alarcdo and Fonseca 2019).
Moreover, physiological signals support personalized analyses, which is pertinent for
learners with special needs, such as those with autism (Rudovic et al., 2018b).

In this review, we aim to provide new researchers and educators in smart educa-
tion and distance learning settings with an overview of the primary requirements and
methods used to develop automatic engagement estimation methods, particularly in
education/learning settings. The definitions, datasets, and methods are summarized
in benchmark tables to provide an accessible overview of the systematic frameworks.

The research questions that guided this review were defined as follows:

+ RQ1I: How should the type of engagement to be measured be defined?

+ RQ2: What datasets are suitable for developing automatic engagement estimation
methods?

+ RQ3: What automatic engagement estimation methods have been developed in

the literature?

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) to select articles for this review. In the literature, we first reviewed the defini-
tion of engagement to help new researchers understand what type of engagement they
want to focus on. Understanding the type of engagement being focused on is important
before engagement levels are measured to determine which engagement cues, datasets
and methods should be used. The widely used datasets and machine learning-based
methodologies for automatic engagement estimation are then examined.

The remainder of this article is organized as follows. The procedure for selecting the
articles for this review is explained in “Review method” section. “Results and discus-
sions” section presents the key finding based on the RQs. Finally, the conclusions,
including the contributions, limitations, and future directions, are summarized in
“Conclusion” section.

Review method

The systematic review methodology employed in this study was adopted from the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model
(Page et al., 2021). The review structure was guided from PRISMA 2020 Checklist
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Fig. 1 lllustration of the article selection process adopted from PRISMA flow diagram

addressing the abstract, introduction, methods, results, and discussion. However,
for readability reason, we include the discussion in results section, which also is pre-
sented to address each RQ, and in conclusions section.

A literature search was carried out based on PRISMA flow diagram with modifica-
tion by adding eligibility phase. Therefore, there are 4 phases in the flow, i.e., identi-
fication, screening, eligibility, and inclusion. We also modify the flowchart by adding
initial inclusion criteria (such as keywords, timeline, and literature type), and focus
discussion (i.e., engagement definition, dataset, and method). Figure 1 shows the
modified PRISMA flowchart used to select articles in this review.

Identification

The literature search was carried out by selecting research articles from the follow-
ing electronic databases and libraries: Scopus, Mendeley, IEEE Xplore, and Science-
Direct. The following criteria were used to define the included studies:

+ Focused on machine learning-based estimation
+ Deployed in education/learning settings
+ Journal publications or conference proceedings only if they developed an influen-

tial dataset for engagement estimation.
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Based on the above criteria, we identified articles that satisfied the following terms: (1)
keywords: automatic AND engagement OR student engagement OR learner engagement
AND estimation OR prediction OR recognition; (2) publication year: 2010-2022; and (3)
literature type: research article, excluding books, magazines, news articles, and posters.
Additionally, to obtain more references, we used the snowballing approach by searching
Google Scholar. A total of 429 articles were obtained in the identification phase accord-
ing to the aforementioned search terms.

Screening

In this phase, duplicate articles were excluded. Then, the titles and abstracts were scruti-
nized to determine whether they met the review criteria. The exclusion criteria included
systematic reviews, surveys, and preliminary works (e.g., only report designs). With the
exclusion criteria, 352 articles were excluded, yielding 124 articles.

Eligibility
Journal articles and conference proceedings were assessed for eligibility in this phase.
The titles, abstracts, main contents, and conclusions were examined to ensure that they
met the inclusion criteria. In addition to the exclusion criteria mentioned in the screen-
ing phase, we also excluded articles that did not focus on automatic engagement esti-
mation or were not related to education/learning settings. Even though face detection/
recognition is a component of engagement estimation in some cases, we excluded arti-
cles that focused more on face detection/recognition than on engagement estimation.

A total of 10 journal articles were excluded in this phase according to the exclusion
criteria. For the conference proceedings, only articles that proposed an influential data-
set for engagement estimation were included. With this condition, 73 out of 76 articles

were excluded.

Inclusion

Finally, a total of 47 articles were selected, including 44 journal articles and 3 conference
proceedings. In this review, we focused on three main topics: engagement definitions,
datasets, and methods. In the discussion section, we also present some supporting arti-
cles with citations in the literature.

Results and discussions

Forty-seven articles were selected for this review. The articles were published between
2010 and 2022, although no included articles were published in 2013. However, research
on automatic engagement estimation in education/learning settings has increased in
recent years (Fig. 2). In particular, in 2021, 14 articles (29.79%) on this topic were pub-
lished (doubled from the previous year) following the outbreak of the COVID-19 pan-
demic, which started in 2020.

Among the selected articles, 3 were published in conference proceedings, and the
remainder were published in 33 different journals. Most of the journal articles were pub-
lished in IEEE Transactions on Affective Computing (n = 9; 19.15%), Computers & Edu-
cation (n = 3; 6.38%), and Applied Intelligence (n = 2; 4.26%), as shown in Fig. 3.
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Interestingly, research on automatic engagement, which is aimed at education and
learning settings, has been conducted in several research domains, including human-
human interactions (HHIs), human-robot interactions (HRIs), human-computer inter-
actions (HClIs), and embodied conversational agents (ECAs). From the reviewed articles,
we also noted some studies based on data from offline classrooms. Therefore, we added
the classroom as a separate research domain in this review.

As shown in Fig. 4, research on automatic engagement estimation in education/learn-
ing settings was dominated by HCI (n = 28; 59.57%), followed by HRI (n = 10; 21.28%)
and Classroom (1 = 7; 14.89%) (see Appendix Table 2).

RQ1: how should the type of engagement to be measured be defined?

In engagement estimation studies, the definition of engagement varies considerably. The
definition of engagement depends on the main focus of the study (Christenson et al.,
2012; Keen 2009). In educational or learning contexts, we found that the three main
research domains depended on the engagement stimuli: HCIs, HRIs, and ECAs, HHIs.
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Although HRI research is novel in the field of education, robots can assist humans in
different learning processes, such as helping children learn cognitive and social skills
and supporting educators teaching difficult concepts (Sharkawy 2021). Robots can not
only assist in learning processes but can also measure and increase learner engagement
(Celiktutan et al., 2019; Rudovic et al., 2018b; Del Duchetto et al., 2020). HRI research-
ers defined engagement via two approaches. The first approach defines engagement
as a process during interactions that combines verbal and nonverbal communication
between two (or more) partners, and the second approach defines engagement as an
interaction quality metric.

Moreover, researchers who focused on ECAs (Peters et al., 2005) and intelligent tutor
systems (ITSs) (D’Mello et al., 2007) viewed engagement as a value that indicates how
likely a person is to remain with their partner and continue an interaction.

Furthermore, engagement estimation research in the field of HCI defined engagement
based on engagement cues in computer-based learning, such as learners watching vid-
eos, writing, and playing educational games, or in classroom recordings (Whitehill et al.,
20145 Monkaresi et al., 2017; Sumer et al., 2021).

This inconsistent definition of engagement in the literature due to the lack of consen-
sus and taxonomy for learning engagement (Yue et al., 2019) may cause confusion for
new researchers in this field. To address this challenge, we introduce a taxonomy for
engagement and systematically review the definition of engagement used in the selected
articles (Fig. 5). As a baseline, we follow the definition of engagement in education and
learning environments proposed by Fredricks et al., (2004), which has been widely used
in engagement research (Wolters and Taylor 2012; Finn and Zimmer 2012; Greene 2015;
Xie et al., 2019; Azevedo 2015).

Engagement is associated with internal states constructed by various cues and may
not be visually apparent. Fredricks et al. (2004) divided engagement into three catego-
ries: behavioural, emotional, and cognitive engagement. Although, in this definition of
engagement, the components to construct each type of engagement overlap consider-
ably, as shown in Fig. 5.

Behavioural engagement describes learners’ participation in learning and tasks
(Fredricks et al., 2004). In classroom settings, behavioural engagement is shown by
actively participating in class, such as by asking questions or displaying attention and
concentration (Sumer et al., 2021). Emotional engagement refers to learners’ affective
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Fig. 5 Taxonomy of engagement definition and its components

reactions in the classroom or during learning, including interest, boredom, happi-
ness, sadness, and anxiety (Fredricks et al., 2004). Cognitive engagement, which is
also referred to as self-regulation, incorporates learners’ psychological investment in
learning, including their flexibility in problem solving, learning motivation, and cop-
ing mechanisms when faced with failure.

The components for assessing engagement include effort, attention, and persistence
for behavioural engagement; various emotional reactions (such as anger, surprise, dis-
gust, enjoyment, fear, and sadness (Ekman and Friesen 1978)) to the learning materi-
als for emotional engagement; and metacognitive strategies, namely, how learners set
goals, plan, and organize their study efforts, for cognitive engagement (Fredricks et al.,
2004).

In developing automatic engagement estimation methods, these components can
be obtained with several modalities (Table 2), such as log files, which include infor-
mation related to learner performance, reaction times, and errors (Cerezo et al.,
2016; Okubo et al., 2017; You 2016); affective cues, including face and body analyses
from video/images (Whitehill et al., 2014; Bosch et al., 2016; Bosch 2016); and physi-
ological cues, such as galvanic skin responses (Di Lascio et al., 2018; McNeal et al.,
2020), electroencephalograms (EEGs) (Poulsen et al., 2017; Bevilacqua et al., 2019),

Page 8 of 48



Karimah and Hasegawa Smart Learning Environments (2022) 9:31 Page 9 of 48

heart rates (Darnell and Krieg 2019; Monkaresi et al., 2017), and combinations of
these cues (D’Mello et al., 2017).

The engagement level can be determined by grouping emotions according to
Ekman’s basic emotions (Ekman and Friesen 1978) or Russel’s model (Russell 1980).
For example, Altuwairqi et al., (2021a) suggested that ‘surprised’ indicates strong
engagement; ‘enthusiastic; ‘excited, and ‘nervous’ indicate high engagement; ‘satis-
fied’ and ‘happy’ indicate medium engagement; and ‘bored’ indicates low engage-
ment. Other behaviours, such as not looking at the computer and playing with
hair, are classified as disengagement. For two-level classification, strong, high, and
medium engagement are grouped into the high engagement class, while low and dis-
engagement are grouped into the disengagement class. In addition, Olivetti et al.,
(2019) divided engagement level into three classes based on the first and fourth
quadrants of Russell’s model: Class 1 included bored, relaxed, and unresponsive;
Class 2 included happy, attentive, content, and perplexed; and Class 3 included sur-
prised, astonished, and embarrassed.

Consulting the taxonomy, we then reviewed the definition of engagement with a
two-step approach. First, we examined the modalities used in each article and how
the engagement level was determined. The articles included three common engage-
ment modalities: affective cues (including audio and visual), physiological cues,
and log files that were annotated to determine engagement. Some works used pub-
licly available datasets or facial expression tools that already included basic emo-
tion labels. Therefore, we included basic emotions in the taxonomy at the same level
as the other modalities to further define the type of engagement (i.e., behavioural,
emotional, or cognitive). Note that one engagement cue does not exclusively corre-
spond to one engagement type, as previously discussed.

For example, Apicella et al. (2022) estimated emotional and cognitive engagement
with a physiological sensor, i.e., EEG signal acquisition, because the type of stimuli
considered during data collection was related to internal emotions and the cogni-
tive task. In this case, two types of stimuli, namely, social feedback and background
music, which were organized based on Russel’s four quadrants, were used to esti-
mate emotional engagement, while a cognitive task (Continuous Performance Test)
was used to estimate cognitive engagement.

Moreover, Goldberg et al. (2021) analysed three types of engagement with one
modality, namely, videos recorded in an offline classroom. The behaviour of the stu-
dents (on- or off-task) in the videos and a knowledge test presented during the lec-
ture were used to estimate the behavioural and cognitive engagement levels, while
facial features were extracted from the video to analyse emotional engagement.
Therefore, in addition to the engagement cues used, defining what type of engage-
ment is being measured depends on what stimuli were presented to the participant
during data collection and what physical or cognitive behaviours were observed.

Overall, most of the selected articles analysed emotional engagement
(n = 40; 65.57%) with affective cues (n = 38; 57.58%), including visual (from videos,
which show facial, body, and head information) and audio (speech) cues (Figs. 6 and
7) (See Appendix Table 2).
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RQ2: what datasets are suitable for developing automatic engagement estimation
methods?

Adequately labelled data and a sufficient amount of data that includes as many general-
ized variables as possible are important criteria for developing automatic engagement
estimation methods. Automatic engagement estimation approaches can be developed by
using publicly available datasets or self-collected datasets. Publicly available datasets are
open, freely downloadable and may have some terms and conditions, such as use in only
research contexts or with consent from the authors. Moreover, self-collected datasets
(also referred to as non-public datasets) are built according to specific tasks and cannot
be publicly shared due to privacy policies and ethics.

In contrast to emotion recognition datasets, which are typically labelled based on
Ekman’s basic expressions (e.g., anger, disgust, fear, happiness, sadness, surprise, and
neutral), there are only a few publicly available engagement datasets, i.e., datasets that
include ‘engagement’ in their labelling process. However, as shown in the taxonomy of
engagement estimation (Fig. 5), an emotion recognition dataset can be used for auto-
matic engagement estimation by modifying labels or by introducing other measure-
ment metrics to define engagement types. In this article, we refer to datasets that are
used in the automatic engagement estimation literature even though they have no



Karimah and Hasegawa Smart Learning Environments (2022) 9:31 Page 11 of 48

straightforward engagement labels as engagement-related datasets and datasets that
have ‘engagement’ label as engagement datasets.

The selected articles include four engagement-related datasets and three engagement
datasets that are publicly available. The public engagement-related datasets include: (1)
the NVIE dataset! (Wang et al., 2010), (2) BAUM-1 (Zhalehpour et al., 2017), (3) the
MASR dataset, which is used in Psaltis et al. (2016) but was proposed in Psaltis et al.
(2016), and (4) AffectNet (Mollahosseini et al., 2019). The public engagement datasets
include: (1) DAISEE? (Gupta et al., 2016), (2) UE-HRI® (Ben-Youssef et al., 2017), and (3)
MHHRI* (Celiktutan et al., 2019) (see Appendix Table 3).

DAISEE is one of the most popular publicly available engagement datasets used in the
literature (Pabba and Kumar, 2022; Liao et al., 2021; Ma et al., 2021; Thiruthuvanathan
et al,, 2021; Mehta et al., 2022). Another popular publicly available engagement dataset is
the Emotion Recognition in the Wild (EmotiW) dataset. This dataset was excluded from
this review because the dataset is being continuously updated; however, EmotiW 2018
(Dhall et al., 2018) and 2020 (Dhall et al., 2020), are accessible for academic research
(ACM International Conference on Multimodal Interaction 2020, 2020).

The data in DAIiSEE and EmotiW were collected in ‘in-the-wild’ environments, where
participants contributed to the data collection process by recording themselves show-
ing their upper body while watching learning videos. The participants could join from
anywhere, and no camera or lighting specifications were considered. Therefore, the qual-
ity (e.g., illumination, background noise, and occlusion) of the videos varies. Although
in-the-wild data have considerable variations, they are believed to be the closest to real-
world conditions (Gupta et al., 2016; Dhall et al., 2018, 2020).

Despite the ease and amount of available data, DAISEE, EmotiW, and other publicly
available datasets were collected with participants of certain ethnicities, which may not
be appropriate for all target subjects. Moreover, ‘in-the-wild’ data may be difficult to
process due to the large variations. Therefore, most engagement studies build custom
engagement datasets that address the requirements of their model or system (Appendix
Table 3). However, because data collection is costly and time-consuming, the amount
of data collected may be insufficient. In such cases, self-collected data can be combined
with engagement-related datasets or transfer learning data to enhance the estimation
performance.

Transfer learning is a type of fine-tuning, which is briefly described in Sect. “Fine-Tun-
ing and Transfer Learning Techniques” In general, transfer learning involves using a pre-
trained neural network on a large dataset to extract features to use on tasks with smaller
datasets. Some image datasets used for transfer learning include FER-2013 (Goodfel-
low et al., 2013), VGGFace (Parkhi et al., 2015), VGGFace2 (Cao et al., 2018), FaceNet
(Schroff et al., 2015), AffectNet (Mollahosseini et al., 2019), 300W-LP and AFLW2000
(Zhu et al., 2016), JAFFE (Lyons et al., 2002), CK+ (Lucey et al.,, 2011), and RAF-DB (Li
et al,, 2017) (see Appendix Table 3).

1 A natural visible and infrared facial expression database for expression recognition and emotion inference.
2 User engagement in spontaneous human-robot interactions.
3 Dataset for affective states in E-environment.

* Multimodal human-human-robot interactions dataset for studying personality and engagement.
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Fig. 8 Pie chart of the engagement measurements and annotations used in the selected articles

Engagement measurement
There are various approaches for measuring engagement, including self-reports, experi-
ence sampling techniques, teacher ratings, interviews, and observations (Fredricks and
McColskey 2012). In addition, different indices (such as performance indices, number of
clicks, and sensor data) have been used to assess engagement (Yue et al., 2019; Apicella
et al., 2022; Yun et al., 2012). However, external observations, self-reported measures
and ratings are commonly used to measure engagement (Whitehill et al., 2014; Christen-
son et al., 2012). Moreover, most publicly available engagement datasets were collected
based on external observations by external annotators (n = 20; 43.48%) (Fig. 8).

Self-reported measures are cheaper and easier to collect than external observations,
which require more personnel to measure engagement (Christenson et al., 2012). Self-
reports can be performed by self-annotating or completing questionnaires related to
self-engagement (O’Brien and Toms 2010). However, self-reported measures are prone
to Dunning-Kruger effects, as people are biased in recognizing self-competence (Kru-
ger and Dunning 1999; Pennycook et al., 2017). In addition, these measures dependent
strongly on participant compliance and diligence (Eisele et al., 2022). The bias associated
with self-reported measure was also observed by Ramanarayanan et al. (2017b; a).

Furthermore, observational measures limit the judgement quality of learners’ actual
effort, participation, or thinking (Fredricks et al., 2004; Peterson et al., 1984). An external
observer is an overhearer (Schober and Clark 1989) that may not consider nonverbal
behaviours as signs of engagement. For example, learners who are judged to be on-task
or engaged by observers may not actually be thinking about the learning material. In
contrast, some learners who appear to be off-task or unengaged may be attempting to
understand or relate new ideas to what they have learned (Peterson et al., 1984). In addi-
tion, in terms of cognitive engagement, cognition is not easily observable and must be
inferred from behaviours or assessed according to performance or self-reported meas-
ures (Fredricks et al., 2004; Winne and Perry 2000).

Alternatively, index measurements and combination approaches have been applied to
reduce bias. Among the selected articles, four (8.70%) studies used index measurements,
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six (13.04%) studies combined self-reported measures with external observations, and
two (4.35%) studies combined self-reported measures with some index.

Trindade et al. (2021) performed calculations on log data from courses in Moodle
to evaluate engagement. Similarly, Hasnine et al. (2021) calculated concentration indi-
ces, Apicella et al. (2022) combined self-reported measures with performance indi-
ces, and Yue et al. (2019) combined self-reported measures with quiz scores to assess
engagement.

Annotations

Annotation is a crucial step in building a good dataset. Single data points can be anno-
tated manually by one or multiple annotators or by using a framework (Chi and Wylie
2014) or annotation tools such as CARMA (Girard 2014), ANVIL (Kipp 2008), NOVA
(Baur et al., 2015), and ELAN (Wittenburg et al., 2006; Brugman and Russel 2004), as
shown in Table 3.

To determine whether the labels are consistent, an agreed-upon final label must be
determined by several annotators, for example, by using Cohen’s kappa value (Wang
et al,, 2010; AlZoubi et al., 2012; Whitehill et al., 2014; Zhalehpour et al., 2017; Ashwin
and Guddeti 2020a, b). Cohen’s kappa has also been used to evaluate the efficiency of
classifiers for multiclass and imbalanced data (Thiruthuvanathan et al., 2021).

The final label can also be determined by measuring intraclass correlations (ICCs)
(Goldberg et al., 2021; Rudovic et al., 2018b) or by applying the majority-vote aggrega-
tion technique (Yun et al., 2020; Pabba and Kumar 2022; Zhalehpour et al., 2017). Highly
consistent labelled data usually indicate a high degree of credibility (Zhang et al., 2020).

Labelling issues

Visual computer vision-based engagement estimation datasets encounter several chal-
lenges, such as various camera angles and image quality (illumination, background,
occlusion, etc.). In addition, the difficulty in capturing subtle changes in visual appear-
ance leads to mislabelling issues. For example, one video clip may show more than one
engagement state annotated as one state. As a result, some frames may be mislabelled,
potentially influencing the frame-by-frame estimation process (Yun et al., 2020). Frame-
based labelling is viewed as the easiest solution. However, this approach lacks continu-
ous labels, which provide more precise information (Sumer et al., 2021). To address this
issue, temporal dynamics features need to be extracted (Yun et al., 2020).

However, in some cases, some frames are more significant for determining engage-
ment levels, while other frames can mislead the final estimation result (Zhu et al., 2020).
One solution for addressing this problem is applying an attention mechanism. The
attention mechanism in deep learning directs attention to effectively choose important
frames (Vaswani et al., 2017; Winata et al., 2018).

Another labelling issue is false interpretation. For example, learners may be engaged
regardless of where they are looking, and observers might label a learner who looks
down as disengaged while the learner is actually thinking or processing the learning
material. Especially in higher grade levels, learners may show/hide their engagement,
and engagement cues may thus be more difficult to identify (Lufi and Haimov 2019).
Moreover, age can affect attention levels (Lufi and Haimov 2019). Therefore, collecting
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an engagement dataset that represents learners’ authentic internal states is a challenging
task.

RQ3: what automatic engagement estimation methods have been developed

in the literature?

Machine learning, which is a subset of artificial intelligence (AI), is known for its capabil-
ity to acquire knowledge to make decisions by extracting patterns from raw data (Good-
fellow et al., 2016). Machine learning techniques have been applied in various fields,
including agriculture, transportation, business, and education. Machine learning has led
to the development of affective computing methods that automatically recognize human
emotions and behaviours (Schuller 2015; Kratzwald et al., 2018; Zhao et al., 2019; Rouast
et al.,, 2021), supporting the advancement of artificial intelligence in education applica-
tions (Chen et al., 2020; Ouyang and Jiao 2021). Therefore, in general, automatic engage-
ment estimation methods are referred to as machine learning (ML)-based algorithms.

Since machine and deep learning methods are the most commonly used approaches
for developing automatic engagement estimation tools in the literature (Fig. 9), in this
section, we briefly discuss the pre-processing steps and estimation methods (classifica-
tion or regression). We classified the estimation methods as classic machine learning
and deep learning techniques.

Deep learning is a subset of machine learning. Both techniques work by mapping raw
data features to extract the desired information. Nevertheless, it may be difficult for
computers to extract features from raw data with large variations, and these features
may be identifiable only using a nearly human-level understanding of data (Goodfellow
et al.,, 2016). Therefore, classic machine learning methods require hand-designed fea-
tures. Moreover, deep learning approaches reduce the desired complicated mapping into
a series of nested mappings that can be described by layers (Goodfellow et al., 2016). For
example, to identify image features, the input is presented as a visible layer. Then, the
next layers, namely, the hidden layers, divide the image into smaller maps such as edges,
corners and contours, object parts, and finally, the object identity. Figure 10 depicts
a Venn diagram showing how deep learning is distinguished from classic machine
learning.
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Fig. 10 The difference between machine learning and deep learning

Table 1 Face recognition tools for face detection and feature extraction

Tools name Used in

OpenFace (Baltrusaitis et al. 2016, 2018)  (Kaur et al. 2018; Rudovic et al. 2018b; Goldberg et al. 2021; Ma et al.
2021; Wu et al. 2020; Zhang et al. 2019; Zhu et al. 2020; Thong Huynh
etal. 2019; Li et al. 2021; Engwall et al. 2022)

OpenCV (Yang et al. 2018; Wang et al. 2020; De Carolis et al. 2019; Bhardwaj et al.
2021; Hasnine et al. 2021)
Dlib (Hasnine et al. 2021; Mehta et al. 2022)

OpenPose (Cao et al. 2017) (Vanneste et al. 2021; Zheng et al. 2021; Wu et al. 2020; Zhu et al. 2020)
RetinaFace (Deng et al. 2019) (Sumer et al. 2021)
FasterRCNN (Ren et al. 2015) (Rudovic et al. 2018a)

(

(

faceAPI Castellano et al. 2012)
Affectiva APl in iMotion Dubovi 2022)

Pre-processing

Before data can be fed into a network, the raw data must be pre-processed to extract
the features. Video/image-based data can be pre-processed with face detection, track-
ing, and cropping techniques (Yun et al., 2020). Alternatively, statistical values can be
extracted to obtain representation information from features in a given time window
(Hernandez et al., 2013; Sanghvi et al., 2011; Yun et al., 2020). Statistical rules such as
sum, max, min, and mode can be utilized to aggregate meaningful information as input
for classifiers, including support vector machines (SVMs) and neural networks (Yun
et al., 2020).

Face detection and feature extraction Appearance-based features can be divided into
two categories: low-level features and high-level features. Low-level features include the
information generated in each video frame in a given time window. In particular, HCI
engagement research has adopted low-dimensional geometry and appearance descrip-
tors as features (Sumer et al., 2021; Whitehill et al., 2014). Additional low-level features
include local binary patterns in three orthogonal planes (LBP-TOP), Gabor features, and
box filters (BFs) (Li and Deng 2020).

High-level features are features extracted by aggregating low-level features (Yun et al.,
2020), such as facial action units (FAUs) and head poses. Facial features and head poses
are some of the most commonly used features for determining engagement and atten-
tion (Akker et al., 2009; Ba and Odobez 2006; Dong et al., 2010; Voit and Stiefelhagen
2008; Zhang et al., 2007). These features can be extracted statistically or by using facial
recognition tools, as shown in Table 1.
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OpenFace is a popular computer vision toolkit for extracting facial features, including
in automatic engagement estimation research (Table 1). OpenFace implements multitask
cascaded convolutional networks (MTCNNSs) (Zhang et al. 2016) for face detection, con-
strained local models (Baltrusaitis et al., 2013; Zadeh et al., 2017) for landmark detection
and tracking, eye rendering (Wood et al., 2015) for eye gaze estimation, and cross-data-
set learning and person-specific normalisation for facial action unit (FAU) detection.
In addition, the OpenC\/5 face detection library (Haar Cascade (Viola and Jones 2004,
2001; Schmidt and Kasiniski 2007)) and DIib library for face and landmark detection are
widely used. The mean shift-based object tracker in OpenCV can also be used for face
tracking. Furthermore, in HRI, face recognition can be performed by utilizing the soft-
ware development kit (SDK) built into the robot, for example, the NAOgqi People Per-
ception in the Pepper robot (Ben-Youssef et al., 2021). Interested readers are referred to
(Wang and Deng 2021) for an in-depth explanation, especially deep learning-based face
recognition.

Data augmentation Data augmentation is the process of creating new data based on
real data without changing the original data. For image inputs, data augmentation can
be performed by flipping (horizontally or vertically), cropping, scaling, or translating/
rotating the images. As a result, the sampling rate for the input can be increased by add-
ing the augmented data to the original dataset (Shen et al., 2022; Ashwin and Guddeti
2020b; Pabba and Kumar 2022).

Feature selection Feature selection not only determines the optimal set of features but
also ranks and compares the most discriminative features. Some feature selection meth-
ods include F-scores (Chen and Lin 2006), RELIEF-F (Whitehill et al., 2014), DeepLift
(Rudovic et al., 2018b), and recursive feature elimination random forests (RFE-RFs).
Alternatively, ANOVA can be used to analyse the significance of labelled features (Schi-
avo et al., 2014).

Dimensional reduction Dimensional reduction is the process of decreasing the dimen-
sion of the input feature to prevent overfitting (Yun et al., 2020). Dimensional reduction
can be applied to a dataset before the data are fed into the network. Some dimensional
reduction methods include principal component analysis (PCA) (Sumer et al.,, 2021;
Wang et al., 2010) and forward feature selection (FES) (AlZoubi et al., 2012). However,
dimensional reduction can also be performed by layer reduction using various pooling
layers (max, average, and variance pooling, 1x1 convolutional layers) when a convolu-
tional neural network is utilized (Yun et al., 2020).

Addpressing imbalanced data One major issue with engagement datasets is imbalanced
data that are severely skewed towards the majority class (Yun et al., 2020). Imbalanced
class labels often occur because disengagement is rarely observed in continuous label-
ling. Many methods have been proposed to address this issue (Galar et al., 2012; Chawla
et al., 2002; Garcia et al., 2012; Dresvyanskiy et al., 2021). There are three categories of
resampling techniques (Ben-Youssef et al., 2021): (1) undersampling methods, which aim
to balance class distributions by eliminating majority class examples; (2) oversampling
methods, which generate minority class examples, e.g., the synthetic minority oversam-
pling technique (SMOTE) (Chawla et al., 2002); and (3) hybrid methods that combine

> https://opencv.org/.
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Fig. 11 Pie chart of the use of classic machine learning methods for automatic engagement estimation

both sampling methods (Garcia et al., 2012; Chawla et al., 2002). Moreover, continuous
scales may be discretized into groups (Rudovic et al., 2019a, b), and weighting techniques
(Dresvyanskiy et al., 2021; Lin et al., 2017) have also been used to address this problem.

Classic machine learning methods

Engagement is estimated by calculating probabilities. To calculate the engagement prob-
ability, several classic machine learning methods can be utilized, such as the support
vector machine (SVM) and its variations (including support vector regression (SVR)),
naive Bayes (NB), decision trees (DTs), logistic regression (LR), clustering techniques
(e.g., K-nearest neighbour (KNN)), and random forest (RF). These machine learning
techniques are conveniently available in machine learning toolboxes such as Waikato
Environment for Knowledge Analysis (WEKA) (Witten and Frank 2005) (as used in
(Cocea & Weibelzahl 2011; Monkaresi et al., 2017; Ribeiro Trindade and James Ferreira
2021)), the Computer Expression Recognition Toolbox (CERT) (Littlewort et al., 2011)
(as used in (Whitehill et al., 2014)), and the MATLAB library ((Chatterjee et al., 2021;
AlZoubi et al., 2012).

Between 2010 and 2022, classic machine learning methods dominated the automatic
engagement estimation literature (Fig. 9), especially SVMs (Fig. 11). Note that some of
the selected articles examined more than one algorithm. Therefore, the totals in Fig.11
do not correspond to the number of selected articles (see Appendix Table 4).

Deep learning methods
With the development of deep learning, research on automatic engagement estimation has
applied these techniques to improve the estimation performance (Fig. 9). In this section, we
briefly introduce some deep learning methods, including those used in the selected articles.
For a more detailed explanation on deep learning techniques (especially for face recognition),
interested readers are referred to (Wang & Deng, 2021; Fuad et al,, 2021; Li & Deng, 2020).
Multilayer perceptron (MLP) The multilayer perceptron (MLP), also called the feedfor-
ward neural network or deep forward network, was one of the first deep learning algo-
rithms. The MLP is a mathematical function that is formed by combining many simpler
functions to map some set of input values to output values (Goodfellow et al,, 2016). An
MLP consists of at least three layers of nodes, i.e., the input f M hidden f @ and output
f® layers, to define the mapping y ~ f*(x) = f(x) = f® (f® (f(V (x))). The first and last
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layers are called the input and output layers, respectively, while the number of hidden lay-
ers may be varied, which determines the depth of the model. Furthermore, each layer may
contain more than one unit depending on the number of inputs and outputs. This algorithm
has also been used in automatic engagement estimation for performance comparison with
other algorithms (Ben-Youssef et al., 2019; Sumer et al., 2021; Rudovic et al., 2018b).

Convolutional neural network (CNN) A convolutional neural network (CNN) is a
specialized kind of deep learning (DL) algorithm for processing data that employs
mathematical linear operations known as convolutions as opposed to matrix multipli-
cation (Goodfellow et al., 2016). The convolution operation is typically denoted with
an asterisk: x'(¢) = (x * w)(¢), where & is the feature map, i.e., the estimated value
from the convolution of the input x with a kernel w at time ¢t (Goodfellow et al., 2016).

CNNs are currently one of the most popular methods in different fields (Fig. 12).
This technique has been widely used in various computer vision applications, includ-
ing image classification (He et al., 2016), semantic segmentation (Noh et al., 2015),
object detection (Szegedy et al., 2015), face recognition (Parkhi et al., 2015), spati-
otemporal feature learning (Tran et al., 2015; Husain et al., 2016; Ji et al., 2013; Yun
et al., 2020; Rudovic et al., 2018a; Abedi and Khan 2021; Ashwin and Guddeti 2020c;
Yue et al,, 2019), and automatic engagement estimation (see Appendix Table 4).

CNNs are popular because they can be highly modified and pretrained. Some CNNs
include AlexNet (Krizhevsky et al., 2017), i3D (Carreira and Zisserman 2017), VGG16
(Simonyan and Zisserman, 2014), and ResNet (He et al., 2016; Szegedy et al., 2015).

The inputs to a CNN are usually greyscale or RGB images. The use of multiple small
filtering kernels allows the network to extract more discriminative features because
multiple small kernels are easier to optimize than one large filter kernel (Mohamad
et al., 2020; Wang et al., 2020). However, CNNs have some crucial issues, such as large
training times, gradient vanishing due to the use of deep networks, and a large num-
ber of parameters (Thiruthuvanathan et al., 2021).

Recurrent neural network (RNN) A facial expression changes through three stages,
i.e., onset, apex, and offset (Liu et al., 2014). In recurrent neural network (RNN) algo-
rithms for engagement estimation, time-series images are more reasonable than static
images as input since time-series present sequence-related task information (Jordan
1990). RNNs capture information at earlier and later time steps by remembering each



Karimah and Hasegawa Smart Learning Environments (2022) 9:31 Page 19 of 48

piece of information over time (Sharkawy 2020). Therefore, this algorithm has become
a more popular automatic engagement estimation method (see Appendix Table 4).

Some types of RNNs include long short-term memory (LSTM) (Hochreiter and
Schmidhuber 1997) (Yue et al., 2019; Ben-Youssef et al., 2019; Del Duchetto et al.,
2020; Liao et al., 2021; Sumer et al., 2021; Engwall et al., 2022), gated recurrent units
(GRUs) (Ben-Youssef et al., 2019), and network Turing machines (NTMs) (Qiao and
Bi 2020; Ma et al., 2021).

However, despite advantages such as considerable computational power in temporal
processing models and applications, in practice, RNNs are difficult to train due to net-
work instability (Sharkawy 2020). Moreover, the networks may suffer from short-term
memory issues if the input sequences are too long. Thus, RNNs may have difficulty
capturing earlier time step information due to vanishing gradients (Sharkawy 2020).

Therefore, the attention mechanism was introduced to learn to associate the ele-
ments in sequence C with the elements in the output sequence (Bahdanau et al.,
2014). The attention mechanism essentially determines a weighted average that is
used to focus on specific parts of the input sequence at each time step (Goodfellow
et al., 2016). Although the attention mechanism was originally introduced in the con-
text of machine translation (Bahdanau et al., 2014), it has also been utilized in DL
applications for automatic engagement estimation (Liao et al., 2021; Sumer et al.,
2021; Mehta et al., 2022; Shen et al., 2022).

Other classifiers Other neural network techniques that have been used for auto-
matic engagement estimation include the fuzzy min-max neural network (FMMNN)
classifier (Simpson 1992; Gabrys and Bargiela 2000), which was implemented by (Yun
et al., 2012) for automatic engagement estimation, the deep belief network (Hinton
et al., 2006), which was used in (Dewan et al., 2018), and linear discriminant analysis
(LDA) (Apicella et al., 2022; Wang et al., 2010).

Fine-tuning and transfer learning techniques

One fine-tuning technique for addressing insufficient training data is applying trans-
fer learning, which utilizes networks pretrained on a large number of images (Bengio
2011; Wang and Deng 2021). Various models have been trained on large face image
datasets. For example, Sumer et al. (2021) used AffectNet (Mollahosseini et al., 2019)
and 300W-LP (Zhu et al., 2016), which were trained on ResNet50, for transfer learn-
ing. The pretrained models help the engagement estimation network learn general
features related to face identification (Yun et al., 2020). As mentioned in Sect. “RQ2’,
other large datasets that have been used for transfer learning include FER-2013
(Goodfellow et al., 2013), VGGFace (Parkhi et al., 2015), VGGFace2 (Cao et al., 2018),
FaceNet (Schroff et al., 2015), AffectNet (Mollahosseini et al., 2019), 300W-LP and
AFLW2000 (Zhu et al., 2016).

Performance metrics
To judge the automatic engagement estimation performance, the prediction results
should be compared with human judgements in the dataset (Whitehill et al., 2014; Yun
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et al., 2020). In machine learning pipeline, performance metrics are used to monitor and
measure the performance of a model depend on the task. Automatic engagement esti-
mation problem can be seen either as classification or regression task. An engagement
estimation is a classification task if the engagement is estimated in discreet class, e.g.,
low engagement class vs high engagement class. Otherwise, an engagement estimation
is a regression task when continuous output desired. Some metrics used to measure the
performance of regression task are Mean Absolute Error (MAE), Mean Squared Error
(MSE), and Root Mean Squared Error (RMSE), which mainly calculating the distance
between the predicted and the ground truth.

Classification performance metrics evaluate the estimation model that compares
discrete classes, such as accuracy, precision and recall, F1-score, and Area Under the
Curve-Receiver Operating Characteristics (AUC-ROC). Moreover, confusion matrix is
also used to visualize the ground-truth labels versus the predicted results in a table.

Accuracy metric defines the number of correct predictions (true positive (TP)) divided
by the total number of predictions. It is the most common metric for evaluating classi-
fication performance due to its simplicity. However, Accuracy may not be reliable when
the dataset is severely unbalanced. In a severely skewed dataset, the classifier may not
discriminate well despite high accuracy values because the classifier identifies only the
most common class.

Alternatively, Precision/Recall (PR) trade-off curve (used in (Leite et al., 2015)) and
F1-score (Schiavo et al., 2014) are used to overcome the limitation of Accuracy. Preci-
sion determines the performance by calculating the proportion of TP prediction to the
total positive prediction (TP + false positive (FP)). Similarly, Recall calculates the TP
prediction to the total number of TP and false negative (FN). Meanwhile, F1-score is the
harmonic mean between the precision and recall.

Some alternative metrics that are more informative and “imbalance-friendly” include
the balanced accuracy, AUC-ROC (Hernandez et al., 2013; Leite et al., 2015) and 2-alter-
native forced choice (2AFC) (Whitehill et al., 2014).

AUC-ROC visualizes the classification performance based on correct and incor-
rect classifications (Fig. 13). The ROC curve plotted the trade-off between the TP rate
(Recall) to the FP rate. AUC represents the degree or measure of separability between
classes as a summary of the ROC curve (Bradley 1997). The AUC scores between
0.7 — 0.8, 0.8 —0.9, and > 0.9 are considered acceptable, excellent, and outstanding,
respectively (Mandrekar 2010; Li et al., 2021).



Karimah and Hasegawa Smart Learning Environments (2022) 9:31 Page 21 of 48

. P TP
Precision = ———— Recall (TP rate) = ———
(TP + FP) TP + FN
FP Precisi Recall
FPrate =1— TPrate = ——— F1 — Score = 2 % rec‘zs‘zon * Reca
TN + FP Precision + Recall

The 2-alternative forced choice (2AFC) (Mason & Weigel ,2009; Tingfan et al., 2012)
is an unbiased estimate of the AUC-ROC curve since it expresses the probability of
discriminating true positives (TP) from true negatives (TN). A 2AFC value of 1 indi-
cates perfect discrimination, while a value of 0.5 indicates that the classifier performs at
chance levels.

Furthermore, other metrics such as Matthews correlation coefficient (MCC) (Tingfan
et al., 2012) and specificity and sensitivity (Yun et al., 2020) are also used in the engage-
ment estimation literature. (see Appendix Table 4).

Conclusion

This article reviewed recent research on automatic engagement estimation in educa-
tion/learning settings, focusing on work published between 2010 and 2022. In particu-
lar, this review examined engagement definitions, datasets, and machine learning-based
methods from forty-seven selected articles. The article selection and review methodol-
ogy were adopted from the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) model (Page et al., 2021) to answer three research questions:

« RQ1: how should the type of engagement to be measured be defined?

+ RQ2: what datasets are suitable for developing automatic engagement estimation
methods?

« RQ3: what automatic engagement estimation methods have been developed in the

literature?

The results and discussion with the presented information, figures, and tables aim at
providing new researchers with insight on automatic engagement estimation to enhance
smart learning with automatic engagement recognition methods.

To answer the RQ1, we examined the definitions of engagement used in the selected
articles and introduced an engagement definition taxonomy (Fig. 5) as a guide for educa-
tors and engagement estimation research, particularly for education/learning purposes.
The taxonomy defined three types of engagement: behavioural engagement, emotional
engagement, and cognitive engagement. Each engagement type was connected with
some engagement cues, including affective cues, physiological cues, log files, and basic
emotions. The modalities for obtaining engagement cues were also discussed, including
speech cues, visual cues (face, head, and eye gaze), physiological sensor data, and log
data.

From the discussion, we found that to define what type of engagement is being meas-
ured depends on engagement cues used, what stimulies presented to the participant
during data collection, and what physical or cognitive behaviours observed. We believe
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that the proposed taxonomy will allow for enhanced research on automatic engagement
estimation.

The datasets used in the literature were summarized in this review to address the
RQ2. The datasets include publicly available datasets and self-collected datasets. In this
review, publicly available datasets were divided into two categories, namely, engage-
ment datasets and engagement-related datasets, to distinguish the availability of engage-
ment labels. The engagement measurement methods and annotations were highlighted
because incorrect interpretations in this step leads to severe bias. The number of partici-
pants, type of samples, number of annotators, and label information were summarized
in a table to provide a reference for building engagement datasets.

Finally, in addressing the RQ3, we discuss machine learning-based methods have
been applied to develop automatic engagement estimation approaches in the literature.
We found that between 2010 and 2022, classic machine learning algorithms (including
support vector machines (SVMs) and decision trees (DTs)) were used more in previ-
ous work. However, since 2019, the trend has moved to deep learning algorithms, espe-
cially convolutional neural network (CNN)- and recurrent neural network (RNN)-based
algorithms.

Limitations and remaining challenges

There is bias in the subjective determination of whether an article was aimed at educa-
tion/learning settings. For example, some articles appear to be aimed at other purposes,
such as therapy for children with autism Rudovic et al. (2018b) or human-robot interac-
tions Ben-Youssef et al. (2019). However, the articles were included if the authors per-
ceived that there was subtle information about a learning activity or the possibility that
the proposed action could applied in the education process.

Moreover, the combination of a clear engagement definition, and suitable machine
learning methods allows learners’ engagement during learning activities to be measured
automatically, including human-human interactions, human-computer interactions and
human-robot interactions. The estimation performance is especially promising for deep
learning-based methods. However, the practicality of the implementation in real educa-
tion settings is not discussed in this review. Therefore, the implication and application of
these automatic engagement estimation methods should be addressed in future work to
address various research questions, such as “How does engagement estimation improve
learning outcomes?’, “What conditions and requirements are needed in automatic
engagement estimation applications?’;, and “In what learning settings can automatic esti-
mation be applied?”.

Furthermore, we discuss several remaining challenges, including cognitive engage-
ment, personalized engagement, and machine-learning pitfalls.

Cognitive engagement Table 2 shows that most automatic engagement research has
focused on behavioural and emotional engagement and that affective data, especially
appearance-based video data, were mostly utilized to estimate engagement. However,
cognitive engagement, which can be determined through self-regulated learning or pre-
post tests, plays an important role in successful distance learning. Similar to behavioural
and emotional engagement, cognitive engagement can be measured using questionnaires
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(Li et al., 2021). However, few studies (Table 2) have considered this type of engagement.
Therefore, we believe that more engagement cues for cognitive engagement should be
developed in future automatic engagement estimation research.

Personalized engagement Various definitions of engagement have been constructed in
the field of education. Although engagement can be divided into three types (i.e., behav-
ioural, emotional, and cognitive engagement), conceptualizations of engagement some-
times include only one or two of the three types. All three types can be considered to
determine engagement levels (Fredricks et al., 2004). To the best of our knowledge, no
research has answered how these engagement types evolve and change over time. There-
fore, whether the engagement cues may take different forms depending on the age range,
gender, ethnicity, and education level of the participants is unknown.

Moreover, facial physiognomy differences between people with different ethnic
backgrounds may result in various distributions of engagement levels (Rudovic et al.,
2018a). Several automatic engagement estimations are targeted participants with
specific cultures or backgrounds. For example, as shown by Libin and Libin (2004), a
child’s background, including their cultural or psychological profile, needs to be con-
sidered when designing therapeutic strategies.

Network personalization can be achieved using demographic information (culture
and gender), followed by individual network layers for each child (Rudovic et al., 2018b).
However, it is unknown how engagement estimation results can be generalized in actual
applications (Bosch et al., 2016). Thus, the user target must be defined, and the data
must be collected from participants with the appropriate cultural background (for exam-
ple, learners with autism spectrum conditions (ASCs) (Tincani et al., 2009; Conti et al.,
2015)) to train the model (Rudovic et al., 2018a). Therefore, automatic engagement esti-
mation, which considers individual differences, remains an open challenge.

Machine learning pitfalls Machine learning (ML) methods have been applied in vari-
ous fields; however, reproducibility is an issue, as reviewed by Kapoor et al. (2022). The
review examined 20 reviews across 17 research fields and found errors in 329 papers
that used ML-based methods. While experienced machine learning practitioners are
well aware of these errors, researchers in other disciplines may not be (DeepLearning.
Al 2022). Although education research was not included in the review (Kapoor and
Narayanan 2022), we found similar issues (such as no training-testing splits, sampling
biases, and pre-processing the training and test sets together) in the selected articles (see
Appendix Table 4). The misuse of ML can generate invalid results that are irreproducible
in implementations in real-world educational settings. Therefore, automatic engagement
researchers should be aware of these issues (Kapoor and Narayanan 2022). Furthermore,
education experts and ML experts could collaborate on engagement research to develop
more effective models (DeepLearning.Al, 2022).

Appendix
Tables 2, 3, and 4.
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