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Abstract 

Technological innovations and changing learning environments are influencing 
student engagement more than ever before. These changing learning environments 
are affecting the constructs of student behavioural engagement in the online environ-
ment and require scrutiny to determine how to facilitate better student learning out-
comes. Specifically, recent literature is lacking in providing insights into how students 
engage and interact with online content in the self-regulated environment, consider-
ing the absence of direct teacher support. This paper investigates how instructional 
design, informed by the factors relating to behavioural engagement, can influence 
the student-content interaction process within the fabric of inquiry-based learning 
activities. Two online learning modules on introductory science topics were developed 
to facilitate students’ independent study in an asynchronous online environment. The 
study revealed that students showed a high commitment to engaging and complet-
ing the tasks that required less manipulative and pro-active effort during the learning 
process. The findings also revealed that instructional guidance significantly improved 
the behavioural engagement for student groups with prior learning experience in 
science simulations and technology skills. This study highlights several issues concern-
ing student engagement in a self-regulated online learning environment and offers 
possible suggestions for improvement. The findings might contribute to informing the 
practice of teachers and educators in developing online science modules applicable to 
inquiry-based learning.

Keywords:  Behavioural engagement, Online learning, Inquiry-based learning, Learner-
content interaction, Self-regulated learning, Predict observe explain (POE), Science 
concepts, Scaffolding

Introduction
Student engagement is a prerequisite for learning and central to any successful educa-
tional experience. Contemporary research relating to online learning environments 
(Garrison & Cleveland-Innes, 2005; Meyer, 2014) highlights the key role of engagement 
in effective learning. Researchers have endeavoured to define and understand vari-
ous dimensions of student engagement that apply across various contexts (Bond et al., 
2020). Some have defined student engagement as a ‘psychological process’ implicated 
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in learning (Marks, 2000); others have conceptualised it by considering what behaviours 
count as engagement (Harris, 2008) and what constructs need to be considered to define 
them (Sinatra et al., 2015). Nonetheless, commonly identified and investigated dimen-
sions of engagement found in the literature focus on the behavioural, cognitive, and 
emotional aspects of this phenomenon (Fredricks et  al., 2004). Behavioural, cognitive, 
and emotional engagement often include multidimensional constructs and are highly 
influenced by context and defined by a given conceptual framework (Reeve et al., 2019; 
Schmidt et  al., 2018). Whether it is the construct or context, it has been argued that 
a detailed level of specificity is required to measure and conceptualize student engage-
ment (Sinatra et al., 2015).

Within an online learning context, student engagement and interactivity are difficult to 
capture in precise detail (Rojas et al., 2016). One of the reasons for this difficulty resides 
in the complex nature of the online environment and the nature of the task involved. The 
online environment may involve multiple dimensions (Anderson, 2008; Mayer, 2019) as 
variables (Fig.  1) and their combination requires careful consideration during instruc-
tional design.

A traditional didactic lecture might be defined by combining the far, left-hand condi-
tions in the continua in Fig.  1, whereas an online, open, inquiry-based learning (IBL) 
environment involving individual students might be described by a combination of the 
far right-hand conditions. Mayer (2004) presents a strong case for avoiding unstruc-
tured, unguided inquiry environments where high cognitive load and lack of direction 
may result in negative outcomes on student learning.

Online students in remote, asynchronous, individual environments are likely to expe-
rience different interactions to those in face-to-face, teacher facilitated, synchronous 
contexts (such as the traditional classroom), and immediate individual feedback is easier 
to deliver in the latter. Also, an online environment offers a novel teaching and learning 
context which is highly influenced by the digital interface, available technologies, and 
the underpinning pedagogical design. Mayer (2019) proposes, after 30 years of research 
on online learning, that the instructional methods are central to student learning and are 
informed by a combination of behaviourist, cognitivist, and constructivist conceptions 
of learning. It is not the instructional media on its own that enables learning.

Key questions that educators might pose regarding students’ engagement in online 
contexts include: What do students engage with? When do students engage? and How do 

Fig. 1  Variable conditions and participants in online learning environments (F2F: face-to-face)
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students use educational technology in their learning? (Ding et  al., 2017; Dixson et  al., 
2017; Sheeran & Cummings, 2018). To answer these questions, educational institutions 
are primarily dependent on the data from the learning management system (LMS) ana-
lytics. LMS analytics readily capture quantitative engagement data such as how many 
clicks, login time, submissions or reads were made by each student. Total time spent 
on the activities, the total number of completed tasks achieved, etc. are also avail-
able in LMS. However, while data analytics are conceptualised as indicators of student 
behavioural engagement, they are insufficient to define student engagement in detail, 
specifically the quality of the engagement related to learning. Researchers are keen 
to understand the nature of students’ behavioural engagement with the technology 
resources while they study independently and how the underlying pedagogical design 
influences students’ independent interactions during tasks. To address this issue, the fol-
lowing research question has been investigated within an inquiry-based learning con-
text to enable further understanding of the nature of student exploration and interaction 
with the learning content:

•	 To what extent does prior experience with interactive simulations influence student 
behavioural engagement during student-content interactions in the self-regulated 
inquiry-based online learning modules?

Inquiry‑based learning pedagogies: disciplinary and contextual versatility
IBL has been described as a flexible pedagogical approach for active, student-centred 
forms of instruction in higher education, its adoption is evident across all levels of 
education (Aditomo et al., 2013). Many consider IBL as a pedagogy that is particularly 
relevant to science, technology, engineering, and mathematics (STEM) and science 
education disciplines through the focus on laboratory learning (Abd-El-Khalick et  al, 
2004). It is also evident in practice across multiple other disciplines such as psychology 
(MacKinnon, 2017), arts, humanities, and social sciences (Ahmad et al., 2014; Shih et al., 
2010), vocational education (van der Graaf et al., 2020), nursing and medical education 
(Rodríguez et al., 2019; Theobald & Ramsbotham, 2019). IBL has been used in a wide 
range of educational levels and contexts such as K-12 classrooms (Aditomo & Klieme, 
2020; Kubicek, 2005), undergraduate and graduate level education (Chan & Pow, 2020; 
Lewis et al., 2021).

IBL approaches have been particularly prevalent in STEM and health education dis-
ciplines. IBL methods are praised for fostering authentic learning experiences in prac-
tice-based disciplines and are well suited to the cognitive difficulties encountered in 
clinical practice (Levett-Jones et al., 2010; Tang & Sung, 2012). Research shows that IBL 
strategies promote group interaction and reflection on authentic practices (Horne et al., 
2007), and provide an enjoyable experience to learn (Kirwan & Adams, 2009). Recently 
Theobald and Ramsbotham (2019) employed IBL approach using a clinical reasoning 
framework with scaffolding elements to examine undergraduate nursing students’ inter-
actions and teachers’ teaching behaviours. They found that clinical reasoning scaffolds 
embedded within the IBL approach promote high levels of student engagement. The 
teacher also plays a key role to create a favourable IBL environment for the students.
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Sotiriou et al., (2020) showed that even in large-scale implementations at school lev-
els, teachers can create individual inquiry scenarios and monitor students’ achievement 
when an IBL approach has been effectively integrated within the programme. Findings 
from this research showed that individual inquiry scenario helps the high achievers 
more than the other students in complex problem-solving scenarios. Spronken-Smith & 
Walker (2010) recommend that teachers carefully consider the learning outcomes based 
on the level of instructional guidance provided during IBL, the teaching and research 
nexus can be strengthened through open, discovery-oriented inquiry whereas highly 
structured activities scaffold the development of inquiry skills.

IBL pedagogies can facilitate multiple aspects of blended learning according to the 
instructional aims for student learning outcomes, the integration of collaborative learn-
ing tools within the IBL can create more effective teaching and learning processes 
involving student–student (S–S) interactions in higher education (Chan & Pow, 2020; 
Kopeinik et al., 2017).

Student diversity is an important consideration in instructional design, Laursen et al., 
(2014) studied the implementation of IBL in undergraduate mathematics courses and 
found that deep engagement and collaboration of ideas are the two key components con-
tributing to students’ active learning (Laursen et al., 2011). They also found that gender 
becomes an important variable in non-IBL courses in which women are gaining lower 
mastery than men, these differences disappeared in IBL courses. This indicates that IBL 
approaches can potentially address those courses that have historically promoted ineq-
uitable access to learning for women. Archer-Kuhn (2020) examined in what ways has 
IBL been utilized in higher education, and how IBL approaches might be compatible 
with values that promote social justice. Archer-Kuhn (2020) further argued that IBL can 
uphold various social work principles and supports the linking of theory to practice dur-
ing service-learning.

Research has incorporated modern technology tools and devices to facilitate the IBL 
approach into the online learning context. For example, in the vocational education con-
text, van der Graaf et  al., (2020) use eye-tracking to examine the integration of infor-
mational texts and virtual labs during inquiry-based learning in science. Results showed 
a higher learning gain in domain knowledge when students did frequent integration of 
informational texts and virtual labs in their virtual experiment. The findings thus infer 
that integration could compensate for the negative effects of lower prior knowledge. 
Becker et al., (2020) showed that mobile devices, such as tablets, in the form of multi-
media learning in physical experimental processes enhance IBL processes. They further 
provide evidence that IBL approach with multimedia integration leads to a significant 
reduction of extraneous cognitive load and greater conceptual knowledge of the subjects 
(Becker et al., 2020).

With all the disciplinary and contextual flexibility that inquiry-based pedagogy offers, 
there is enough evidence that when scaffolding support is given, students become 
actively involved in their learning. The research described above, however, is predomi-
nantly situated within the social constructivism paradigm, where interaction between 
peers and teachers are regarded as central. Student–teacher (S–T) and student–stu-
dent (S–S) interaction, the two facets of interaction theory and the essential tenets of 
social constructivism, have received the majority of attention in the literature of distance 
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education (Bernard et al., 2009; Xiao, 2017). The focus on student-content (S-C) inter-
action has received far less attention than it deserves in the interaction theory litera-
ture, especially when it comes to building a self-regulated learning environment in the 
absence of immediate human support (e.g., teachers, peers). Additional research is nec-
essary to help us better understand student behavioural engagement in the setting of an 
independent online study environment. In this study, therefore, the S-C interaction pro-
cess is explored further to understand students’ behvaioural engagement while learning 
science concepts.

The lack of suitable pedagogical approaches has meant that researchers face significant 
challenges in developing an effective online learning environment for science inquiry 
(Lai et al., 2018). For instance, online environments are unable to deliver effective inter-
action or increase learning engagement without carefully planned learning tactics (Chen 
& Hwang, 2019). In order to create a productive atmosphere for the S-C interaction pro-
cess, there is still a significant challenge in integrating technology to facilitate self-regu-
lated learning processes (Lai & Hwang, 2021). Through incorporating an instructional 
scaffolding technique into the design of the intervention, this current study aims to over-
come this problem and facilitate students’ self-regulation and behavioural engagement 
during science inquiry (Fig. 3).

In this study, we applied different levels of scaffolding support to explicitly synthesize 
the student engagement with the learning content. The scaffolding framework is unique 
in that it gives researchers a focused lens through which to view how students actively 
engage with the learning materials that place an emphasis on inquiry and science learn-
ing. The scaffolding framework represents an emerging pedagogical approach assisting 
researchers to understand how teachers can design learning activities to encourage stu-
dent self-regulation and engagement in online environment.

The POEE scaffolding strategy is demonstrated in practice through two online learn-
ing modules on introductory science concepts that include simulation-based science 
inquiry. It also provides an outline for instructors to create a student-driven independent 
online learning environments and to focus on how guided inquiry facilitated by technol-
ogy support can student interactions and engagement with learning content.

Behavioural engagement in the online context
Moore (1989) proposed three important interactions for online learning environments: 
student-content (S-C), student–teacher (S–T), and student–student (S–S) interaction. 
Moore’s categorization has become a widely accepted framework for the study of the 
interrelationships between teacher, student, and content in an online environment. Stu-
dent behavioural engagement inherently plays a key role in the effectiveness of these 
relationships.

In a traditional environment, it is conceptualized that the study of behavioural engage-
ment relies on observation of student responses to physical and verbal cues provided by 
the teacher; however, these cues become less valuable in the online environment where 
students do not necessarily engage directly with their teachers and peers as part of the 
learning process (Lei et al., 2019). In an asynchronous online context, S-C interactions 
become the key indicator of student behavioural engagement. While visual indicators 
of physical engagement in the online learning process are not as evident as face-to-face 
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learning (Lei et al., 2019), Vytasek et al. (2020) infer that tracking students’ digital arte-
facts can be used to indirectly understand their behavioural patterns. However, these 
analytics data often provide insufficient information to understand how students intrin-
sically regulate their behaviour or why they behave in a particular way during the S-C 
interaction.

In the online context, student behavioural engagement can be transacted either in an 
individual study space or one that is socially oriented. Self-contained online modules 
or courses designed for self-directed study are common examples of learning activities 
in which students must engage individually. on the other hand, students might use the 
feedback and forum aspects of a learning management system to interact more socially 
with their teachers and peers (Baragash & Al-Samarraie, 2018). Within technologically 
mediated situations, this kind of engagement fosters social presence. Hong et al. (2019) 
argued that social presence demands active participation from the people involved in 
the online community. Research indicates that during collaborative tasks, students dis-
play interdependency and essentially synchronize their work through some level of time 
commitment (Romero & Lambropoulos, 2011; Yoo & Alavi, 2001). Furthermore, Yoo 
and Alavi (2001) found that group cohesion promoted students’ drive to be involved 
in collaborative tasks, however, this commitment is only possible when collaborative 
options are included in the online environment. In contrast, it is much more difficult to 
facilitate student engagement in an independent study space when no social interaction 
and collaborative tasks are available.

To better understand student behavioural engagement in the context of an online 
study environment without synchronous teacher (S–T) or peer (S–S) interactions, it is 
important to explore the nature of the student-content (S-C) interactions. Two primary 
aspects of online S-C interactions that have been explored in research are: (a) total time 
spent (time-on-task) on the activity, and (b) quality time spent (nature of student par-
ticipation) in the learning process (Christenson et al., 2008; Ding et al., 2017). In their 
study, Brenner et al. (2017) considered both participation (such as the productive moves, 
clicks, and total tries) as well as time on task (such as total elapsed time) to determine 
the students’ behavioural engagement. Also, Romero and Barberà (2011) argued that 
both time-on-task and the quality of time spent could influence students’ academic per-
formance. Therefore, in this study, we combine both time-on-task and quality time spent 
(or participation) on the tasks to conceptualize students’ behavioural engagement (see 
Fig. 2) during S-C interaction.

Previous studies have argued that several key behavioural engagement constructs 
need to be considered to understand student quality time spent in an online activity. 

Quality time
spent

Behavioral 
Engagement

Time on 
task

• Persistence
• Systematic Investigation
• Task Accomplishment

Fig. 2  Conceptualisation of student behavioural engagement in online environment
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Fredricks et  al., (2004, 2016) concentrated on effort, persistence, attention, good con-
duct, and the absence of disruptive conduct to measure student behavioural engage-
ment. Young (2010) argued that students with high effort and persistence are generally 
exhibiting high levels of behavioural engagement. However, it is undoubtedly more chal-
lenging to quantify students’ good and disruptive behaviour in a remote learning envi-
ronment. Fredricks et al. (2004) reported that students’ completion of a designated task 
is a sign of behavioural engagement. Additionally, a systematic and organised interac-
tion process essentially provides a qualitative dimension to student engagement (Garri-
son & Cleveland-Innes, 2005). Therefore, in this study, students’ systematic efforts in the 
inquiry process are conceptualised as ‘systematic investigation’ and considered as one of 
the important constructs to measure students’ quality time spent on a task. In brief, the 
three important constructs that can define quality time spent by a student on a task are: 
persistence, systematic investigation, and task accomplishment (Fig. 2).

Instructional method design
Critically, it has been found previously  that students have demonstrated poor partici-
pation when scaffolding or guidance has been absent during online learning (Tallent-
Runnels et  al., 2006). Therefore, educators are continually seeking a viable solution to 
delivering an effective, guided inquiry-based, online learning environment. In recent 
times, sophisticated technology has offered educators the opportunity to explore and 
create more sophisticated guided learning environments (Hong et al., 2019). However, 
Meyer (2014) recommended that a strong pedagogical design is required to create and 
structure the learning environment that makes what they need to do and achieve trans-
parent for students.

The inquiry-based learning environment is exploratory by nature in science educa-
tion, it requires active participation, and self-regulation by students in the process of 
their knowledge construction (Sharples et  al., 2015). Therefore, students are encour-
aged to engage in a series of inquiry cycles formulating their reasoning on the problem 
under investigation during the process (Pedaste et  al., 2015). In creating an effective 
pedagogical design, educators often categorise the student learning process in accord 
with the cycle of inquiry phases. One of the popular long-standing pedagogical strate-
gies employed within science education is the predict observe explain (POE) pedagogi-
cal framework (White & Gunstone, 1992). The POE pedagogical framework supports 
instructional methods that enable students to work in phases. For example, students 
need to predict a phenomenon, perform an observation, and then explain the observed 
findings about the initial prediction (Bilen et al., 2016). Other studies have also reported 
that the POE framework can be used to change the students’ initial misconceptions 
into correct ones (Ayvacı, 2013; Karamustafaoğlu & Mamlok-Naaman, 2015; Samsudin 
& Efendi, 2019), while supporting self-regulation (Al Mamun et al., 2020, 2022) in the 
inquiry process.

Consequently, the predict, observe, explain, and evaluate (POEE) pedagogical design, 
an extended version of POE, has been utilised in this study to provide a series of inquiry 
phases for student learning in an asynchronous, self-directed, online environment. The 
details of the development of this pedagogical design have been reported elsewhere (Al 
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Mamun, 2018; Al Mamun et al., 2020). Figure 3 shows the schematic representation of 
the POEE pedagogical framework.

Under the POEE pedagogical design, emerging technologies such as interactive mul-
timedia have been employed to promote higher quality S-C interactivity in terms of 
elicitation, exploration, explanation, and clarification of the concepts. Such multimodal 
technology, including dynamic and interactive representations, may help students to 
understand more complex science concepts (Bernard et al., 2009) and support increased 
student performance (Mayer et al., 2001).

In this study, two learning modules that cover the introductory science topics of Phase 
change and Heat have been used to illustrate how the POEE framework can be used to 
guide instructional design for online inquiry-based environments. Several POEE activi-
ties have been employed in each of the learning modules and examples are shared (Al 
Mamun et al., 2020; Al Mamun, 2022).

Multiple media in the form of videos and animations that include audio narration and 
sound effects, also sometimes music, were utilised to introduce dynamic representa-
tions of concepts linked to the text and embedded images. Interactive simulations were 
also a core learning object included in the modules, they provided only visual interac-
tive experiences without embedded auditory media such as narration, sound effects or 
music. The interactive simulations that have been selected for inclusion in the modules 
in this study were sourced from two popular websites that freely share science simula-
tions, namely physics education technology (PhET) interactive simulations (PhET, n.d.)) 
and Molecular Workbench science simulations (Molecular Workbench, n.d.). Both plat-
forms provide students with interactive and flexible experiences of science concepts at 
the molecular level. Such forms of multimedia technology integration in online environ-
ments can facilitate proximity between learners, teachers and learning content and can 
influence student engagement (Dyer et al., 2018). In addition, Miles et al. (2018) argue 
that delivering educational materials in multiple forms can facilitate student engagement 
and support effective navigation and utilisation of the materials.

Methods
Study context and participants

This study aimed to explore S-C interactions in a self-directed online environment and 
employ a mixed method research design. A group of 30 science students, enrolled in 
first-year chemistry of a large Australian university were selected as a sample for this 

Micro-scripted 
Level

Macro-scripted 
Level

Predict (P)

Elicit students to 
interact

Observe (O)

Exploring the 
learning contents

Explain (E)

Explain the
understanding

Evaluate (E)

Reflection and 
clarification

Fig. 3  POEE scaffolding framework to design two online learning modules (Al Mamun et al., 2020)
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study. In general, sample sizes of 30 are considered adequate for a qualitative data domi-
nant study and can achieve data saturation (Creswell, 2007). Small sample sizes in a 
qualitative study help researchers to obtain detailed, in-depth experiential accounts of 
the phenomenon under study (Ryan et al., 2009). In fact, researchers often do not con-
sider the sample size in qualitative research (Onwuegbuzie & Leech, 2005). However, 
this study also used statistics for quantifying the qualitative data to conduct t-test and 
chi-square test analysis. A small sample size generally satisfies the assumptions of t-test 
and chi-square test analysis (Kim & Park, 2019; Poncet et al., 2016).

Due to the ease of access, this study employed a convenience sampling technique to 
secure this cohort. All enrolled students received an invitation to participate in the study 
via the LMS (Blackboard), and only those who responded positively to the invitation 
were chosen to participate. Students had to give informed consent in order to participate 
in this study. Two student groups were formed based on their self-reported prior learn-
ing experience with online simulations: experienced and non-experienced. Experienced 
learner, in this study, was conceptualised as the student having experience of a science 
simulation in the online environment during their previous science learning. Figure  4 
summarises the details of the participants and study context.

The two learning modules were offered to students in parallel to their formal coursework, 
that is, these activities were not required for their courses. Students participated voluntarily 
in learning from the modules, and they were aware that their performances would not be 
assessed; no grading was assigned to course marks upon their completion of a module.

Data collection

Observations of the S-C interactions included video recording, observation, and stimu-
lated recall interview and a variety of tools were used to collect the data. Students were 
required to participate in only one of the two available learning modules (either Phase 
Change or Heat) and participant IDs are formulated to indicate which module they had 
completed. For example, an ID that begins ‘pxxx’ indicates the Phase Change module and 
those beginning ‘hxxx’ indicate the completion of the Heat module. At the beginning of 
the module, a short orientation was provided to the students showing different com-
ponents of the web-based learning module such as the simulation models, videos, and 
other important elements. Each student was then left to work independently on their 
own in a dedicated room. The student’s on-screen computer activities were recorded 
through the Echo360 software. Additionally, the researcher made observation notes on 
a student’s written responses and on-screen interactions from a remote location using 
Virtual Networking Computing (VNC). Once a student finished a module, a stimu-
lated recall interview was conducted to record the student’s immediate reflection on 
their experiences with the module (O’Brien, 1993). The video recording of the students’ 

Experienced, n=20
Non-experienced, n=10

Participants
Phase Change/ 

Heat

Learning Modules
Multiple 
POEE 

activities  

S-C interaction

Video record,
observation,

interview

Data collection

Fig. 4  An overview of the study environment
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on-screen activities and the researcher’s notes in combination provided the basis for 
conducting this post-module interview. These data collection techniques focussed on 
exploring the different constructs of behavioural engagement like persistence, systematic 
investigation, and task accomplishment.

Data analysis

This study used both an inductive and theory driven thematic analysis approach to for-
mulate themes from the data (Boyatzis, 1998; Braun & Clarke, 2006). The constructs of 
behavioural engagement originated in the relevant theories (described above in Fig. 2) 
while various sources documented in the literature review provided the basis of a ration-
ale for formulating the construction of the themes. Thereafter, the students’ behavioural 
efforts, related to the identified themes, were quantified, and codified to measure the 
relative degree of influence those factors exerted on the interaction process.

Persistence is defined in the literature as a student’s continuous effort to overcome 
various challenges faced in the process of learning (Parker, 2003). Likewise, student per-
sistence, in this study, refers to the student’s prolonged exploration of the simulation 
task in pursuit of understanding the science concepts, even though the consequences 
of this exploration might not contribute to their anticipated learning. Thus, student per-
sistence was measured in this study as the combination of students’ time-on-task and 
their efforts to interact with the simulation activities. In contrast, systematic investiga-
tion denotes a strategic and organised investigation of a concept, contributing directly 
to achieving the anticipated learning. Finally, in combining the results of both the persis-
tence and systematic investigation, students’ task accomplishment was assigned as either 
complete or incomplete. The codified data were then triangulated to explore how they 
impacted students’ behavioural engagement.

For each activity, a threshold time has been defined in order to determine time-on-task 
(Al Mamun et  al., 2022). Combining two distinct metrics has allowed the researcher to 
determine the threshold value of time-on-task. The first author of this study engaged in 
each activity themselves to determine how much time was needed to fully comprehend 
the intended concept from the interaction. Second, the researcher looked at how long each 
participant spent participating in each activity and noticed how long it typically took a 
student to understand the target concept during each encounter. The researcher’s judg-
ment has been merged with the observations of the students’ engagement time to define 
the threshold of time-on-task for a particular activity. We took into account the students’ 
attempts to make use of the virtual tools built into the simulation model during the inquiry 
process (Al Mamun et al., 2022). According to Vytasek et al. (2020), tracking students’ digi-
tal artifacts can be utilized to deduce their behavioural patterns and interaction process.

However, systematic investigation refers to the organized study of the concepts, i.e., a 
student tries to comprehend a topic by thoroughly exploring it while taking into account 
the available stimuli from the simulation environment. Research shows that students are 
generally involved in the process of grasping a particular concept through this kind of 
investigation (Al Mamun et al., 2022). The details of data analysis coding technique have 
been reported in other studies in which four key constructs of behavioural engagement 
mentioned in Fig. 2 have been conceptualised (Al Mamun, 2018; Al Mamun et al., 2022). 
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These studies along with the current study are parts of a larger study. The two authors 
iteratively discussed and cross-checked the coding reliability.

After completing the thematic analysis and quantification of the themes, relevant sta-
tistical analysis has been conducted to compare the data arising between the two groups 
of students. An independent sample t-test has been conducted to consider whether any 
observed difference in mean engagement time between the experienced and inexpe-
rienced student groups was significant. Pearson’s chi-square test of independence was 
conducted to gain further insight into any significant association between two categori-
cal variables. A cross tabulation of the data has been formulated based on the observed 
value and the expected value comes from the null hypothesis, i.e., when the distribu-
tion is independent to each categorical variable. Research suggests that chi-square test 
can be conducted when expected values of the contingency table cells are greater than 
5 (Franke et al., 2012). For any significant association between the categories in a chi-
square test larger than 2 × 2 contingency table, Cramer’s V has been reported to indi-
cate the strength of the association (Kline, 2013). A value of Cramer’s V less than 0.26 is 
considered to indicate weak strength of association (McHugh, 2012). Also, for a contin-
gency table larger than 2 × 2, the source of a statistically significant result can be unclear. 
Therefore, a post hoc test is required to reveal where the significant result is existing in 
the contingency table cells (Sharpe, 2015). For this, adjusted residual, a recommended 
procedure compared to other post hoc alternatives has been used (MacDonald & Gard-
ner, 2000). MacDonald and Gardner (2000) also suggested a Bonferroni correction in 
this process to reduce the chance of committing type 1 error. Therefore, this study used 
the Bonferroni correction to report the adjusted p-value for identifying the value which 
is statistically significantly different from the expectation of the null hypothesis.

Furthermore, when the number of observations was found to be  small and the 
expected frequency in any cell of the contingency table was less than 5, a more appro-
priate form of analysis Fisher’s Exact test has been utilised (Cochran, 1952). Research 
proved that to deal with small observations, Fisher’s Exact test is particularly useful 
(Bower, 2003). This study combined the categories to form a 2 × 2 contingency table for 
Fisher’s Exact test. For the 2 × 2 contingency table, the Phi value has been reported to 
indicate the strength of the association between the categories (Franke et al., 2012). All 
the statistical analyses were performed using statistical package for the social sciences 
(SPSS) software with the significant p-value threshold set at 0.05.

Results
Engagement time with the learning tasks

It was estimated by the researchers that the typical time for a student to complete each 
module would be 50 min. Despite the absence of direct or personal guidance, student 
engagement time with the learning modules was found to be satisfactory. The aver-
age engagement time ranged from 44 to 52 min for each learning module for both the 
experienced and inexperienced student groups. Table 1 displays the statistics of student 
engagement time obtained from the video records.

Table  1 indicates that the mean engagement time (M = 46.90, SD = 15.96) of the 
experienced group was lower than the inexperienced cohort (M = 50.50, SD = 21.64). 
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Nonetheless, the engagement times of the inexperienced group are more spread out com-
pared to the experienced group. Also, the inexperienced group took longer in their ini-
tial time to become familiar with the online environment. As found from the observation 
and video record data, inexperienced students generally engaged for an extended period 
(ranging between 2 to 5 min) at the start of the module in orienting or understanding 
the simulation environment. This prolonged initial familiarisation with the environ-
ment resulted in less engagement time attributable to exploring the target concepts. For 
example, one student exhibited a difficult time initially with a simulation activity that was 
intended to provide the student with an opportunity to learn basic ideas relating to the 
states of matter, i.e., the solid, liquid and gaseous phases of a substance (see Fig. 5). Dur-
ing the interview, this student explained the reason for their initial difficulty:

I think I am trying to move it (the lid of the container) up. Whenever I moved it up, 
I saw the cursor goes away, oh! and I lost it. Also, it took me a little while to realize 
how the pump works (in the simulation model). [p207]

Table 1  Descriptions of students’ engagement time

Engagement time (minutes)

Minimum Maximum Mean Std. deviation

Learning modules

 Phase change (N = 13) 17 82 44.08 19.35

 Heat (N = 17) 23 83 51.18 16.35

Prior simulation experience

 Yes (N = 20) 20 74 46.90 15.96

 No (N = 10) 17 83 50.50 21.64

Fig. 5  ‘States of matter: Basics’ simulation model (PhET, n.d.)



Page 13 of 31Al Mamun and Lawrie ﻿Smart Learning Environments            (2023) 10:1 	

This confirms that the student had faced initial difficulties in understanding the func-
tions of the simulation parameters (e.g., the use of the container lid to change the pres-
sure, and the pump to increase the volume of the substance). Another interview example 
reveals a different student’s reasons for their initial difficulty.

It took me a bit of time to figure out how to work with the play (button) and then 
press the heat (button) up for a long time to get the temperature up. [p103]

This observation suggests that inexperienced students had trouble initially navigating 
the simulations and therefore they took longer to engage with the activity than the expe-
rienced group.

Independent sampled t-test suggests that there were no significant differences between 
the mean engagement time of the experienced and inexperienced student groups 
t(28) = 0.486, p > 0.05. It was found, Table 2, that both groups satisfied the condition of 
homogeneity of equal variances (F = 0.498, p = 0.486).

Student engagement time with separate individual activities across the learning mod-
ules was explored further, a chi-square test of independence was conducted to ascer-
tain if there was any significant association between engagement time and the types of 
activities. A range of scaffolding strategies and activities were included in each module, 
described in depth elsewhere (Al Mamun et al., 2020; Al Mamun, 2022).

The chi-square test of independence, in Table  3, revealed a significant association 
between engagement time and the types of activities, chi-square (4, N = 150) = 27.551; 
p < 0.05. Post hoc analysis revealed that among the types of activities, engagement time 
in open response, feedback and videos significantly differ from the expected count of 
the null hypothesis. This indicates that videos and feedback attracted significantly higher 

Table 2  Significance test between the mean engagement time of the student groups

Levene’s test for 
equality of variances

t-test for equality of means

F Sig t df Sig. (2-tailed)

Equal variances assumed .498 .486 .517 28 0.609

Equal variances not assumed .466 14.068 0.648

Table 3  Students’ engagement time with individual activities

*Significant at p < 0.05

Activities Engagement time 
counts

Chi square result Post hoc analysis

Low High Adjusted residual Adjusted p-value

Text and Images 14 (46.7%) 16 (53.3%) Chi-square (4) = 27.551 − 1.54 0.618

Open Response 20 (66.7%) 10 (33.3%) Sig. (2-sided) = 0.000* − 4.12 0.000*

Feedback 4 (13.3%) 26 (86.7%) 2.75 0.030*

Videos 4 (13.3%) 26 (86.7%) Cramer’s V = 0.43 2.75 0.030*

Simulations 10 (33.3%) 20 (66.7%) N = 150 0.17 4.325
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engagement time, and open response entries resulted in significant low engagement 
time.

It should be noted that the simulations were presented as the central activities in each 
of the learning modules so it was hypothesised that they would attract longer engage-
ment time, but the data suggests otherwise. During the interview, students expressed 
why they had preferred videos that were also included in the modules in contrast to 
the simulations and had engaged for a longer time with the video mode compared to 
simulations.

I love the videos because it does not require so much input on your part. You can just 
sit back and take it all visually. [h102]
I prefer video to simulation because it explains things in a very short way. [h204]
I think naturally anyone is happy to see the videos. It explained well, and it helped 
my understanding of the structures of the water molecules in different phases. [p206]

The data suggests that the videos were perceived as easier to understand and did 
not require any physical interaction by the students, i.e., no active S-C interaction was 
required. Students appeared happy, and probably intrinsically motivated to engage with 
the videos as they could act receptively during the activities. The interviews with stu-
dents also revealed that they had spent time engaging with feedback because they were 
intrinsically motivated to know whether their answer was correct or incorrect.

I like feedback. I think it makes understanding clear. [p207]
It was good to have that feedback and the little video afterwards. Now I know why I 
got it wrong, and I will not get it wrong again. [h101]
If I did not get the feedback and if I did not know the answer, I would just carry on 
without really understanding the concept. But because it allows you to answer and 
then give feedback on it, yeah, I think that is really helpful. [p103]

The above comments support the effectiveness of the feedback mechanism as scaffold-
ing to engage students more deeply in activities, an outcome similar to that noted in a 
previous study (Mount et al., 2009).

Student effort applied to the task in different instructional settings

Persistence and systematic investigation were examined to identify students’ behavioural 
efforts during the S-C interaction process in three different instructional settings.

In Table 4, the chi-square result shows a statistically significant association between 
instructional settings and student persistence, chi-square (2, N = 68) = 15.579, p < 0.05. 
Post hoc analysis did confirm that students show significant high persistence in mod-
erately guided activities and significantly low persistence in the minimal or open-
ended instructional settings. Similarly, students showed a tendency to demonstrate 
more systematic investigation in the guided activities compared to unguided activities. 
However, the chi-square test shows that the association between instructional settings 
and students’ systematic investigation were not statistically significant, chi-square (2, 
N = 68) = 5.608, p > 0.05. So, students’ systematic investigation was not directly influ-
enced by the instructional guidance.
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In brief, activities without the instructional guidance were perceived to be less effec-
tive by students. The original intention of open and minimally guided activities was to 
support students’ independent exploration and learning. It was found from observation 
of behaviour in this study that this strategy did not work well for students, this finding is 
further supported by the data from the student interviews shown below:

It is not clear about the objective of this simulation. There should be clear instruc-
tions for the activities in the simulation (activity). [h206]
There are some parts (in simulation), need to do some activities but there are not 
enough instructions for me. So, I am struggling there. [h204]
The simulation was pretty hard to understand. Because I had to play around with 
the things myself. It will be better if somebody was voicing over or explaining it to 
me. [p205]

Additional specific insights into why the open exploration of simulations might have 
hindered students are provided in the more extended example of a student’s open explo-
ration process below.

The simulation activity considered here was taken from the Heat topic module in 
which minimal guidance was strategically and deliberately offered. It represents the 
concept of thermal expansion at the molecular level (Fig.  6). The simulation has two 
important interactive tabs (functions) labelled ‘Heat’ and ‘Cool’ that enable the student 
to change the heat in the system. A student can initiate their independent exploration by 
clicking on either of these tabs.

One student [H103], during the interaction, was observed to continually attempt to 
increase the system heat by clicking on the ‘Heat’ tab, disregarding the ‘Cool’ tab which 
could have been used to reduce the system heat for comparison. In the interview, the 
student explained their behaviour:

I just heated it all the way to see how to get it to overflow (with the system heat). 

Table 4  Students’ persistence in different instructional settings related to the level of instructional 
guidance

*Significant at p < 0.05

Instructional 
settings

Persistence Chi-square result Post hoc analysis

Low High Adjusted 
Residual

Adjusted p-value

Minimal or open 
ended

19 (79.2%) 5 (20.8%) Chi-square 
(2) = 15.579

− 3.92 0.000*

Moderate guidance 6 (26.1%) 17 (73.9%) Sig. 
(2-sided) = 0.000*

2.48 0.039*

Strong guidance 7 (33.3%) 14 (66.7%) Cramer’s V = 0.48 1.52 0.386

Systematic investigation

One concept 
and below

Two concepts 
and above

Minimal or open 
ended

18 (75.0%) 6 (25.0%) Chi-square (2) = 5.608

Moderate guidance 11 (47.8%) 12 (52.2%) Sig. (2-sided) = 0.061

Strong guidance 9 (42.9%) 12 (57.1%) N = 68
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Because that was my intention. I did not think to cool down the system heat. [h103].

Students demonstrated that their exploration of the simulation model was found to 
be both beneficial and unproductive. For example, the above student sought to find out 
what might happen to an object when extreme heat was applied. Intuitively, freedom in 
general to explore a simulation seems appealing. Consequently, this autonomy in learn-
ing led them to have a new experience with the simulation model, perhaps, supporting 
the construction of new knowledge about molecular behaviour. In contrast, such free-
dom in the exploration might be interpreted as reaping unproductive results. In par-
ticular, overlooking the ‘Cool’ tab deprived the student of experiencing the molecular 
behaviour at a low temperature, and consequently probably left them in a state of an 
incomplete understanding of the thermal expansion process; that is, it was observed that 
the student had missed the opportunity to experience the effect of a low temperature on 
the behaviour of molecules.

This study also found that, despite the known benefits of guided activities, some stu-
dents preferred the open nature of the activity. There was evidence of a belief that the 
simulation and its affordances were enough to support their self-exploration. A student 
in this category clarified their view in the post-module interview:

I think simulation itself can guide. The whole idea is kind of like making your way 
through … and playing around with all the concepts. Manipulate all these things 
and answer the questions, do what you want... you can do most things you like, kind 
of get yourself involved and learn at a deep level sometimes. [p207]

The ability to ‘do what you want’ was captivating for this type of student who appeared 
keen to embark on self-exploration. This infers that the implicit guidance instigated from 
the learning environment coupled with the consequences of the exploration met their 
requirements adequately.

Fig. 6  Thermal expansion simulation model from Heat learning module (MolecularWorkbench, n.d.)
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The influence of prior simulation experience

The dichotomy in experience with exploring a simulation such as the one described 
above was investigated further in terms of whether the association between instruc-
tional settings and student persistence was influenced by prior simulation experience. 
Prior simulation experience was added as a control variable in the statistical analysis to 
ascertain its effect on students’ level of persistence and systematic investigation in dif-
ferent instructional settings. Fisher’s Exact test seems appropriate here, as the expected 
frequency is lower than 5 counts in the contingency table for chi-square test. Therefore, 
a 2 × 2 contingency table has been formed by combining moderate and strong guid-
ance under the ‘guided’ category and open/minimal guidance has been put under the 
‘unguided’ category.

Table  5 indicates that Fisher Exact test for the experienced student group showed 
statistically significant association between instructional settings and student persis-
tence (Exact Sig. 2-sided) = 0.000; p < 0.05; and between instructional settings system-
atic investigation (Exact Sig. 2-sided) = 0.023; p < 0.05. The strength of the associations 
measured in Phi value showed strong association (0.589 and 0.389) for both the per-
sistence and systematic investigation for the experienced group. In contrast, for the 
inexperienced student group, the Fisher Exact test shows that instructional settings 
do not significantly associate with persistence and systematic investigation. This result 
indicated that experienced students are more capable of utilising instructional guid-
ance to engage meaningfully with the learning content in the self-directed environ-
ment. Overall, guided activities tended (as the % value indicates) to support higher 
student persistence and systematic investigation than activities that provided minimal 
support for the students.

Students’ task completion rate

Based on the number of S-C interactions, the student task completion rate was found to 
be higher for videos (93.6%) compared to simulations (55.9%) and open response ques-
tions (51.3%), as illustrated in Table 6.

Table 6 shows that the students exhibited reluctance to respond to open-ended ques-
tions with a response rate of 51.3% (around half ) for the inquiry questions asked in the 
learning modules. Interview data indicated that for several students, an incomplete 

Table 5  The influence of prior simulation experience on students’ persistence

*Significant at p < 0.05

Prior 
simulation 
experience

Behavioural effort Instructional settings Fisher’s exact test of independence

Unguided Guided

No Low persistence 6 (66.7%) 6 (37.5%) Exact Sig. (2-sided) = 0.226

High persistence 3 (33.3%) 10 (62.5%)

Yes Low persistence 13 (86.7%) 7 (25.0%) Exact Sig. (2-sided) = 0.000*

High persistence 2 (13.3%) 21 (75.0%) Phi = 0.589

No One concept and below 6 (66.7%) 9 (56.3%) Exact Sig. (2-sided) = 0.691

Two concepts and above 3 (33.3%) 7 (43.8%)

Yes One concept and below 12 (80.0%) 11 (39.3%) Exact Sig. (2-sided) = 0.023*

Two concepts and above 3 (20.0%) 17 (60.7%) Phi = 0.389
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response could be attributed to their understanding still developing hence their inability 
to explain the concept.

I was tweaking my mind (about the ideas) and sometimes it took longer time to do 
things. Obviously, the concepts were not concrete in my mind and so obviously the 
understanding was. [h102].
I guess that I kind of knew the concept, but I did not really know how to word 
them. I had some sort of idea in my head but actually articulating them scientifi-
cally was what I had difficulty with’ [h205]

This suggested that students struggled in interpreting and reformulating their 
thoughts and ideas into precise explanations and therefore left these answers incom-
plete. The findings in Table 6, also supported by the interview data, further confirm 
those observed in “Study context and participants” section and “Data collection” sec-
tion, where students generally revealed a positive attitude towards the video activities 
(completion rate 93.6%). Altogether, these data suggest that the video format attracted 
higher student engagement, albeit receptively. The simpler and less technically dif-
ficult videos demanded lower manipulative effort which in turn enabled students to 
participate visually and, perhaps, were supportive of their receptive understanding of 
the concepts (Al Mamun et al., 2020). As simulation activities are the central compo-
nent of the learning modules, further exploration of students’ task completion rate in 
simulation activities in the three different instructional settings was considered.

The chi-square test of independence in Table  7 reveals a statistically significant 
association between instructional settings and students’ task accomplishment, 

Table 6  Frequency of task completion in different activities

Activities Total 
interactions 
(N)

Completion 
frequency

Completion 
rate (in %)

Nature of participation (source: observation)

Open responses 236 121 51.3 Required written input and cognitive effort to 
process learning

Simulations 68 38 55.9 Required manipulative and cognitive effort to 
process learning

Videos 47 44 93.6 Required cognitive effort to dual process infor-
mation in learning

Table 7  Students’ task completion rate in simulation activities in various instructional settings

*Significant at p < 0.05

Instructional guidance Task completion Chi square test of 
independence

Post hoc analysis

No Yes Adjusted Residual Adjusted 
p-value

Minimal or open-ended 17 (70.8%) 7 (29.2%) Chi-square 
(2) = 11.274
Sig. 
(2-sided) = 0.004*
Cramer’ V = 0.407; 
N = 68

− 3.28 .003*

Moderate guidance 8 (34.8%) 15 (65.2%) 1.11 0.801

Strong guidance 5 (23.8%) 16 (76.2%) 2.25 0.073
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chi-square (2, N = 68) = 11.274, p < 0.05. The post hoc analysis confirmed that it is the 
open-ended/minimal guided activity that causes the statistically significantly low task 
accomplishment rate. In contrast, the analysis clearly suggests that the guided activi-
ties provided support and motivation to students to complete the tasks. This finding 
supported the previous findings discussed in detail in “Data collection” section that 
the students’ degree of effort was lower in open-ended exploratory tasks. Further, stu-
dents’ prior simulation experience was added as a control variable and Fisher Exact 
test has been conducted to understand how prior simulation experience impacted 
students’ task accomplishment rate.

In Table  8 Fisher Exact test reports a statistically significant association, (sig. 
2-sided) = 0.000; p < 0.05 between the instructional settings and higher task comple-
tion rate for the experienced student group. This indicates again that experienced stu-
dents can best utilise the instructional settings in a self-directed environment.

Discussions
Behavioural, cognitive, and emotional engagement are all important multidimen-
sional constructs that are highly influenced by the learning context (Reeve et al., 2019; 
Schmidt et al., 2018). In this study, we have focussed on the behavioural engagement 
of students as they interacted autonomously with guided-IBL in science modules that 
were designed through the application of a POEE instructional model. The instruc-
tional design (Al Mamun et  al., 2020) and findings related to student cognitive and 
emotional engagement as a function of the design have been described elsewhere (Al 
Mamun, 2022; Al Mamun et al., 2022).

Several factors that affect student behavioural engagement focusing upon S-C inter-
actions have been explored in this study in the context of an online learning envi-
ronment. The other study reported elsewhere (Al Mamun et al., 2022) also explores 
behavioural components such as task completion, persistence etc. in relation to stu-
dent cognitive engagement and learning approaches. Based on the measures of differ-
ent behavioural constructs reported in the literature (such as time on task and quality 
time spent) and the factors derived from the current study related to students and 
content, a relationship model is proposed (Fig. 7).

In this model, student behavioural engagement was conceptualised based on the 
relationship between different engagement measures and engagement factors linked 
to the S-C interaction process. Measures of different behavioural engagement were 
distilled from research literature while engagement factors were conceptualised from 

Table 8  Influence of prior simulation experience on task accomplishment

*Significant at p < 0.05

Prior 
simulation 
experience

Instructional settings Task completion Fisher’s exact test of independence

No Yes

No Unguided 5 (55.6%) 4 (44.4%) Exact Sig. (2-sided) = 1.000

Guided 8 (50.0%) 8 (50.0%)

Yes Unguided 12 (80.0%) 3 (20.0%) Exact Sig. (2-sided) = 0.000*

Guided 5 (17.9%) 23 (82.1%) Phi = 0.606
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the data originating in the S-C interaction process. The underlying factors relating to 
both students and content are illustrated in Fig. 7.

Factors affecting students’ engagement time and task completion rate

Previous studies report that in an online learning context, students may lack the moti-
vation to engage with the content in the absence of teacher guidance (Fryer & Bovee, 
2016). In this study, the students’ total engagement time with the two online learn-
ing modules was found to be satisfactory. This is likely due to the underlying POEE 
instructional design supporting students to regulate their learning through a series 
of inquiry phases (Al Mamun et al., 2020). Also, as students worked independently in 
the absence of direct teacher support, a sense of autonomy during their interactions 
might facilitate intrinsic motivation (Deci & Ryan, 1987). Higher engagement time 
has been shown to improve student performance in a range of learning environments, 
including online learning environments (Baragash & Al-Samarraie, 2018), blended 
learning environments (Raspopovic et  al., 2014), and traditional classroom settings 
(Gromada & Shewbridge, 2016).

The mean engagement time of the more experienced student group was lower than 
the student group who had no prior simulation experience. This observation appears 
to contradict previously published results where experienced students tend to 
engage longer in utilising the available technology resources and therefore were able 
to engage more meaningfully in the learning processes (Bates & Khasawneh, 2007). 
However, in the current study, interactive simulations were provided as a dynamic, 
interactive representation of science concepts and it was observed that inexperienced 
students spent more time initially investing in becoming familiar with the functions 
and orienting in the online environment before cognitively engaging in activities. 
Experienced learners, in contrast, spent less time familiarizing themselves with the 
environment and were observed to spend a greater amount of time engaged in actively 
processing understanding of the intended science concepts. It has been reported pre-
viously that when students utilise most of their cognitive ability on something extra-
neous, they often failed to engage meaningfully with the intended learning concepts 
with their remaining cognitive capacity (Mayer, 2019).

This study contributes further evidence that students who are inexperienced with 
simulations demonstrated lower behavioural effort in persistence and task accom-
plishment, likely due to their inappropriate use of cognitive capacity in learning the 

Content factors
• Instructional design
• Types of activities
• Workload

Student factors
• Prior simulation experience
• Motivation
• Cognitive inability

Engagement time
• Time on task

Quality time
• Persistence
• Systematic investigation
• Task accomplishment

Behavioural 
Engagement

Measurable behavioral constructs Student-content factors
S-C interaction process

Fig. 7  Conceptualisation of behavioural engagement for student-content interaction processes
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functions of the representations. They also failed to effectively utilise the incentives 
of instructional guidance that was provided in the self-directed environment in other 
activities. It may therefore initially appear that the strategy of providing multimedia 
representations is flawed, however recent evidence suggests that the provision of mul-
tiple representations can be successful in reducing extraneous cognitive load while 
supporting conceptual knowledge gains (Becker et al, 2020). Therefore, future modifi-
cations of the instructional guidance should aim to reduce the extraneous processing 
involved in the familiarisation with the environment by increasing the signalling and 
applying the contiguity principle (Mayer, 2017). One strategy that can be applied is 
the provision of a brief narrated ‘tour’ of highlighted interactive functions with mod-
elling of how to notice changes using simulations, further research is required to eval-
uate this form of intervention.

When considering individual forms of activity within the S-C interaction process, vid-
eos and feedback activities secured the highest time on task compared to the interactive 
simulations and open response activities. This aligns with a recent finding set in an open 
online course, undertaken by a large cohort, that a major proportion of the students 
(67%) focused almost exclusively on video lectures amongst all of the courses’ compo-
nents and activities (Kovanović et al., 2019). The findings in the current study similarly 
provided an explicit understanding that students were more engaged with video activi-
ties and self-reported that they did not need to engage in manipulative effort and active 
participation compared to the simulation activities and open responses where greater 
effort was perceived to be required. Thus, when students are engaged in video activi-
ties as part of the learning process, it might increase student satisfaction (Bhadani et al., 
2017) and reap improved learning performance (Shen, 2014).

The greater task completion that was observed when videos were the focus in com-
parison to the simulations and open response activities can be explained by the nature 
of interactions that are required, videos typically engage students receptively rather than 
interactively. Previous studies support the notion that a key reason that students are 
willing to dedicate their time to a task and persist to complete a task is the level of moti-
vation that is aroused (Dev, 1997). In the online context, the psychological motivation 
factors accord with learners’ interests, motivation, and positive attitudes toward learning 
(J. Lee et al., 2019). According to Mayer’s dual processing theory, watching videos can 
contribute to the reduction of cognitive load due to the simultaneous use of auditory and 
visual channels (Mayer, 2005, 2017).

In contrast to a video as a mode of content interaction, the simulation models used in 
this study only engage visual channels to process the information. Research shows that 
attention can be increased, and cognition promoted, if auditory media are successfully 
employed (Hughes et al., 2019). Thus, the lack of narration, sounds or music in simula-
tion models might hinder students from completing the task. In contrast, some studies 
are also concerned about the potential cognitive overload due to utilizing a variety of 
types of media in instruction. Limited capacity theory cautions that information pro-
cessing channels have a limited capacity, and an overload of these channels can impair 
cognition (Chandler & Sweller, 1991; Mayer & Moreno, 2003). This would suggest that 
learning content employing a variety of media could lead to cognitive overload (Hughes 
et al., 2019).
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The simulation format already requires manipulative interactions and demands active 
engagement with the activity. This ‘high element interactivity’ can cause working mem-
ory overload (Kehrwald & Bentley, 2020) thus inducing students to become psychologi-
cally demotivated in engagement to complete the task (Lee et  al., 2019). This form of 
the intrinsic load is inherent in the simulations because of its complexity. Research con-
firms that increased complexity creates increased intrinsic load (Sweller, 1999). Thus, 
this area of study requires ongoing investigation to understand whether the integration 
of auditory media will have a negative impact on student learning or promote student 
cognition.

The current study did not offer any extrinsic motivation in the form of summative 
marks or certification hence the absence of external motivators might also contribute 
to the students’ low task accomplishment rate when a higher cognitive load is involved. 
In combination with intrinsic motivation, the rewards anticipated from the task com-
pletion are that the activities may stimulate a desire in students to engage highly with 
the task. Research shows that extrinsic motivation alone, no matter how powerful, can-
not ensure maximal learning (Payne, 2019). In fact, attempting to maximize the learning 
outcomes directly through extrinsic rewards often leads to lower-quality motivation and 
performance (Ryan & Deci, 2000).

One strategy to reduce the extraneous cognitive load is to introduce explicit instruc-
tions to improve the value of the simulation, such as a narrated interactive video to ori-
ent students in the simulation functions (Mayer, 2017). This is supported by the temporal 
contiguity principle which shows the graphical movement and background narration 
describing them simultaneously (Mayer, 2019). However, a balance needs to be achieved 
between the freedom to explore, which makes students cognitively active, and the guid-
ance which is required to support cognitive activity to make meaningful construction of 
knowledge (Mayer, 2004). Mayer (2019) in his review of thirty years of research in online 
learning favours guided activities and passive media argues that they can help students 
active cognitively during the learning process.

Further findings in this study reveal that students sustained their engagement for a 
longer period due to the provision of immediate feedback following their response to 
concept questions. The feedback system employed, helped students to link the discrete 
knowledge they had constructed of a concept towards a more comprehensive under-
standing. In fact, it was found that during interviews most students were in favour of 
receiving immediate feedback while studying online. Studies show that when students 
are motivated, they spent quality time undertaking online learning tasks (Romero & Bar-
berà, 2011). Therefore, feedback can contribute significantly to motivating the students 
to ascertain whether their responses were right or wrong, adjust their understanding 
and continue. Therefore, student engagement time was rated as high regarding the feed-
back activities.

In contrast, students were observed to engage less in activities that involved their sub-
mission of an open-response explanation of a concept. This activity required students 
to cognitively process their understanding and translate them into words in entering a 
response. They needed to utilise their working memory in the process of synchronising 
both the manipulative and cognitive processes involved while writing their responses. 
This might create high cognitive stress, through the imposition of a higher cognitive 
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workload, eventually leading to a low engagement time with the open response activi-
ties and low task accomplishment. Apart from the demand for physical input, there were 
a few other factors that militated against students from completing their answers, for 
example, shallow understanding of the concepts and their cognitive inability to respond 
to the questions correctly. Research shows that cognitive ability is an important element 
in the completion of a learning task (Sweller, 1988; Sweller et al., 1998). As the findings 
of this study revealed, students were presumed to know the associated science concepts 
but failed to respond with adequate explanations; as a result, they most frequently left 
the answer incomplete. Therefore, there is a need for module designers to tailor the open 
response activities by providing ‘hints’ to facilitate students’ thinking in translating their 
ideas into scientifically correct explanations.

The role of affective factors in behavioural engagement in guided IBL online is attract-
ing increasing attention. A recent quantitative study, applying a predict, observe, explain 
inquiry-based model within an online learning environment (Hong et al, 2021) reports 
that student self-confidence increased as well as their critical thinking attitude. The 
affordances of a guided IBL approach appear to outweigh the limitations, the latter can 
be addressed to some extent by careful scaffolding and orientation in the learning envi-
ronment. This emphasises the multidimensionality of engagement constructs which 
require further exploration.

Student persistence and systematic investigation in the guided activities

The other important factors affecting students’ quality of time are persistence and sys-
tematic investigation. Students were more likely to demonstrate high persistence and 
systematic investigation in guided activities than they were in minimally guided or open-
ended instructional settings. Previous studies support the notion that guided activities 
attract higher student engagement (Fisher, 2010; Mason, 2011). Significantly, a recent 
study in inquiry-based STEM education confirmed that the higher the provision of guid-
ance in an online environment, the higher the commitment students demonstrated in 
engaging with an activity (Sergis et al., 2019).

This study, to some extent, found that open exploration often reaps some positive 
results in the long run, as illustrated in the example described in “Data collection” sec-
tion. In such a study space, being an independent learner means such a student is intrin-
sically motivated to explore a simulation (Deci & Ryan, 1987). Students might find such 
an open exploration appealing to them as they are allowed to have a satisfying experi-
ential learning experience. When such an open environment is created, many students 
engage in productive exploration (Podolefsky et al., 2009).

Nonetheless, in the open exploration context, students were often observed to be 
unsuccessful in learning the underlying science concepts. In the example provided in 
“Data collection” section, the student only raised the heat to observe a change, they 
could have lowered the temperature to zero to experience how molecules stopped vibrat-
ing and completely froze, an opportunity that is impossible to view in the real world. So 
herein resides a pedagogical conundrum. Open exploration can lead students to acquire 
new information and construct new knowledge, yet they may not achieve the intended 
learning if they miss an opportunity. In offering a degree of latitude, only partial success 
may be realized. In fact, most of the previous studies reveal that inquiry learning without 
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guidance is less successful (Alfieri et al., 2011; Clark et al., 2012; Kirschner et al., 2006; 
Lazonder, 2014; Luo, 2015). Additionally, open exploration in a technology-rich environ-
ment can create a high cognitive load which can disadvantage the learner (Paas et al., 
2003; Sweller, 1999). Moreover, students are often led to incorrect conclusions when 
they are left on their own to explore and use the technology resources (Podolefsky et al., 
2009). Therefore, a guided scaffolded design is recommended to support students’ effec-
tive learning in the IBL environment.

While set in a STEM discipline context, the findings of this study can be translated 
into a wider range of disciplinary contexts. Guided IBL online, informed by the POEE 
framework, involves a sequence of inquiry phases that can apply to any stimulus context 
in learning. For example, case studies offer authentic inquiry contexts and are popular in 
nursing and clinical education, social sciences, business, law, pre-service teacher educa-
tion and languages. Instructors should tailor the level of guidance and scaffolding tools 
required to their learning contexts, for example, the role of scaffolding and reduction of 
the cognitive load has been addressed in inquiry-based mobile learning in the context of 
a 5th grade social science field trip (Shih et al, 2010).

Prior experience to influence student persistence and systematic investigation

The findings of this qualitative study revealed that prior simulation experience signifi-
cantly improved students’ level of persistence and systematic investigation in guided 
instructional settings. Students’ observed behaviours in demonstrating high persistence 
and systematic investigation support the idea that in the guided environment, students 
who have prior experience can better utilise the educational resources compared to their 
non-experienced peers. Previous studies show that experienced students are more suc-
cessful in their use of a technology-mediated IBL environment (Lee et al., 2010; Pallant 
& Tinker, 2004). Moos and Azevedo (2008) further added that experienced students can 
engage with exploration meaningfully through a more discriminating selection of new 
resources from the technology-mediated environment. Therefore, it is unsurprising that 
experienced students demonstrate higher self-efficacy in a technology-rich environ-
ment (Cheng & Tsai, 2011) and commit to spending more time with the learning content 
(Bates & Khasawneh, 2007).

In contrast, Meyer (2014) argued that inexperienced learners were prone to a lack of 
engagement due to insufficient skills in this environment. In the technology environ-
ment, inexperienced students’ cognitive capacity become depleted as they have already 
utilised a significant portion of their working memory in getting to know and explore the 
rich contents prevalent in this environment (Kehrwald & Bentley, 2020).

Limitations and further research implications
The conceptual and empirical work cited above did not consider the multiple dimen-
sions of student engagement; rather it focused only on students’ behavioural aspects. 
Studies show that there are situations when a student can demonstrate high cognitive 
engagement yet is committed affectively and behaviourally at lower levels. Similarly, a 
student can find a task to be important for learning, yet not capitalise on this under-
standing during interaction because the activity itself might not be personally enjoy-
able and interesting (Schmidt et  al., 2018). Also, a student can demonstrate strong 
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behavioural engagement, but invest less cognitive and affective effort, inferring that the 
student completed the task but very likely did not learn much from the exercise. Studies 
also show that students with low cognitive engagement usually struggle in understand-
ing the concept and therefore adopt a surface level approach, focusing on completing 
the task as a means to end the activity instead of striving to understand the concept at 
a deep level (Fredricks et al., 2004). So, many scenarios are possible, but this study did 
not consider the multidimensional engagement context to allow for a coordinated result 
regarding student engagement and learning. A future study may investigate students’ 
emotional attributes either separately or in combined with other engagement dimen-
sions to examine how their interests affect the interaction process.

This study used the POEE design framework to encourage students to become inde-
pendent learners in an inquiry-based self-directed learning environment. As revealed, 
the absence of any guidance potentially secured less productive learning for some stu-
dents. Nevertheless, strong guidance does not necessarily ensure the best learning expe-
rience either. A possible disadvantage of strongly guided support is that it might limit 
a student’s autonomy in the learning process and reduce the chance of their becoming 
independent learners, a phenomenon which was explored in this study. This dilemma of 
the balance between no guidance versus over-guidance needs to be explored further so 
future studies might experiment with various pedagogical designs to address this issue.

This study only focuses on the elements of intrinsic motivation to examine students’ 
engagement with learning tasks. Study shows that when extrinsic motivational com-
ponents are appropriately combined with the learning process in parallel with intrinsic 
motivation, it improves student engagement and learning achievement (Ryan & Deci, 
2020). Thus, future studies can integrate extrinsic motivational factors to examine fur-
ther student engagement during the S-C interaction process.

Previous studies show sound effects (i.e., audio narration, music etc.) can increase 
student attention and cognition with the learning materials when it has been effectively 
incorporated within the activity (Hughes et al., 2019). However, the science simulations 
used in this study lack all sorts of auditory media and thus, the effect of auditory media 
during the S-C interaction process had not been examined. We recommend future study 
could incorporate the auditory media with the science simulation models to examine its 
effect on the S-C interaction process.

Another potential direction for future studies resides in the use of the POEE design to 
employ a gradual reduction fading of the degree of guidance from the learning activities 
to encourage students towards adopting more responsibility in the process of becoming 
independent learners. This design could provide novice learners with greater continu-
ity in learning and lead them to develop coping mechanisms for interacting more pro-
ductively with more complex online learning environments (Arbaugh, 2014). Research 
shows that when students experience similar activities repeatedly, they become more 
familiar with the technology resources and achieve a certain degree of control over the 
environment, therefore, becoming more independent of instructional guidance (Li et al., 
2019).

Finally, this study involves the application of design principles with a small sam-
ple of undergraduate participants in a single context hence the findings contrib-
ute to increasing the collective body of research evidence that combines to inform 
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practice rather than being claimed as generalisable outcomes. Mayer (2017) proposes 
a research agenda that supports the inclusion of studies that explore the application 
of design principles to advance understanding of student engagement, behaviour and 
learning achievement using multimedia. Thus, the exploration of learning achieve-
ment and consideration of prior academic ability could form the basis of a larger-scale 
quantitative study applying the framework and modules to the formal courses. This 
will help to examine the student learning achievement (high or low) by controlling the 
effect of gender and ESCS (economic, social, and cultural status) in the study.

Conclusions
The underlying POEE scaffolding strategy implemented in the multimedia learning 
modules highlights the student-content interaction process within the paradigm of 
individual cognitive constructivism. As no teacher or peer support was included in 
this study context, the findings of this study revealed several salient factors impli-
cated in understanding the student content interaction process in the self-directed 
inquiry-based learning context. These factors are conceptualised to explain student 
behavioural engagement in this novel context that can support educators in creating 
learning environments conducive to supporting students in becoming independent 
learners. The relationship between the different measurable engagement criteria and 
student-content factors can further support educators in designing their instructional 
strategies applicable to an effective self-directed learning environment.
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