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Abstract 

Massive Open Online Courses (MOOCs) are revolutionizing online education and have 
become a popular teaching platform. However, traditional MOOCs often over-
look learners’ individual needs and preferences when designing learning materials 
and activities, resulting in suboptimal learning experiences. To address this issue, this 
paper proposes an approach to identify learners’ preferences for different learning 
styles by analyzing their traces in MOOC environments. The Felder–Silverman Learning 
Style Model is adopted as it is one of the most widely used models in technology-
enhanced learning. This research focuses on developing a reliable predictive model 
that can accurately identify learning styles. Based on insights gained from our model 
implementation, we propose MOOCLS (MOOC Learning Styles), an intuitive visualiza-
tion tool. MOOCLS can help teachers and instructional designers to gain significant 
insight into the diversity of learning styles within their MOOCs. This will allow them 
to design activities and content that better support the learning styles of their learners, 
which can lead to higher learning engagement, improved performance, and reduction 
in time to learn.

Keywords:  MOOCs, Learning styles, Learning behaviors, Machine learning, 
Visualization tool

Introduction
Over the past decade, Massive open online courses (MOOCs) have offered an innovative 
way of providing open education through distance learning (Yousef et al., 2015). These 
courses can enhance the autonomy of learners and allow institutions to share high-qual-
ity educational resources (Brown, 2013). Despite the advantages and benefits that have 
been highlighted by participants in these environments, including researchers, students, 
event teachers and instructors, there are some criticisms of MOOCs that still need to 
be considered and managed, in order to improve them as open model of learning. These 
limitations relate to various aspects of courses, such as teaching and learning methods, 
the learning content, and the varying needs of learners, among others (Fasihuddin et al., 
2014).
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One of the main limitations of MOOCs is their static organizational structure (Durand 
et al., 2011), in which all learners are generally provided with the same teaching method, 
regardless of their individual learning styles, knowledge levels, and personal preferences. 
A second limitation is due to the massive and open nature of MOOCs that leads to a 
high degree of learner diversity within these contexts (Chuang & Ho, 2016; Koller et al., 
2013).

Many research has been conducted to address this issue by exploring ways to person-
alize and adapt learning experiences in MOOCs (Assami et al., 2018; El Mawas et al., 
2018; Williams et al., 2017). The integration of recommender systems further enhances 
this personalization by providing learners with targeted recommendations of courses, 
resources, and activities based on their interests and previous learning experiences. 
These combined efforts may contribute to a more learner-centric and effective MOOC 
ecosystem.

However, issues related to the massiveness and openness of MOOCs have raised fur-
ther relevant research concerns and present ongoing research challenges. Indeed, under-
standing the learning diversity among MOOC learners and framing effective learning 
strategies based on the spectrum of pedagogical approaches of learning styles (Felder 
& Brent, 2005) is undoubtedly challenging. This is due to the massive numbers of learn-
ers involved which makes it difficult for teaching teams to observe the behavior of each 
learner through direct, face-to-face, interactions.

Overcoming these obstacles requires innovative solutions that leverage technology 
and data analysis to gain a deeper understanding of learners’ needs and preferences, pav-
ing the way for more effective and personalized learning experiences in MOOCs. In this 
regard, several research studies have been carried out of various aspects of MOOCs, 
such as the motivation, intentions, self-regulation, competence and learning styles of the 
students (Bakki et  al., 2015, 2016; Graf & Liu, 2009; Kizilcec et  al., 2016; Koller et  al., 
2013). Among these, the current work focuses on the exploration of learning styles as a 
way to design an effective learning environment that is effectively tailored to the needs 
and characteristics of each learner, rather than delivering the same resources to all learn-
ers in the same way (Blagojević & Milosević, 2013).We believe that, by recognizing and 
accommodating diverse learning styles, MOOCs can create a more inclusive and engag-
ing learning experience that maximizes the potential of each learner.

A learning style refers to an individual learner’s preferred approach to acquire new 
information and ideas, as well as the confidence in processing and using this information 
(Coffield et al., 2004). It is a holistic model that provides a wide range of directions for 
learning that cater to individual preferences. This model recognizes and makes the same 
teaching strategy can be beloved by some learners and hated by others (Oxford, 2003). 
Consequently, understanding and accommodating various learning styles is essential for 
creating an inclusive and effective learning environment that can engage a wide range 
of learners. Indeed, embracing different directions for learning, may allow educators to 
customize their instructional methods to suit the preferences and strengths of each indi-
vidual, enhancing the overall learning experience.

The main goal of this paper is to design a model that can automatically identify the 
learning styles of learners by applying machine-learning algorithms to the large collec-
tions of click logs associated with MOOCs. This work makes the following contributions: 
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(i) we define a list of features associated with each learning style; (ii) we investigate the 
most appropriate clustering algorithms for partitioning learners into homogenous 
groups according to their learning styles; (iii) we investigate the most appropriate clas-
sification algorithms for predicting learning styles; and (iv) we present MOOCLS, a visu-
alization tool that aims to help teachers and instructors to design teaching materials in 
the best possible way and to ensure effective learning for all types of learners.

The remaining sections of the paper are structured as follows: Section “Literature 
review” provides a brief overview of learning styles and provides detailed information on 
approaches to the detection of learning styles. Section “Decoding Learners’ preferences: 
methodological approach to identifying learning styles in MOOCs” outlines our pro-
posed methodology, including data pre-processing, unsupervised modeling, aggregation 
and supervised modeling. Section “From events to visual insights: leveraging MOOCLS 
for learning style visualization”4 gives an overview of MOOCLS, a tool for the visualiza-
tion of learning styles, and presents the main results of an experimental study that aims 
to evaluate the utility and usability of this tool. Finally, section  “Discussion” offers the 
main conclusions drawn from the research conducted.

Literature review
Learning styles

The term "style" began to be used in educational psychology in 1950 (Cid et al., 2018). It 
refers to the behavioral traits adopted by individuals in a specific context that distinguish 
them from others (Fischer & Fischer, 1979). In the educational context, learners do not 
all perceive a learning situation in the same way, each having a personal style for pro-
cessing and organizing information. This concept is denoted as "learning styles" in both 
pedagogy and psychology (Felder, 1996).

Learning styles are a category under a broader of differentiated pedagogy, first intro-
duced by Herb Thelen in 1954 (Petty, 2004). In the light of academic discussion, there’s 
often confusion between the terms ’learning style’, ’learning strategy’, and ’cognitive style’. 
While they may seem interchangeable, they represent distinct concepts. Cognitive styles 
are the preferred, consistent, individual characteristics in organizing and processing 
information (Ford & Chen, 2001; Messick, 1984). In contrast, learning strategies are set 
of tactics that learners employ to control their learning process. It’s a set of action taken 
by learners in regulating their learning process. According to Slack and Norwich, (2007), 
learning strategies are more varied since learners might choose a distinct strategy for 
each task. Meanwhile, learning styles are more stable and can be viewed as personality 
traits. It is essential to emphasize that learners’ learning styles should not be treated as a 
static and stable concept (Kolb, 1976). Rather, they ought to be recognized as a dynamic 
characteristic that can evolve over time.

The concept has gained significant attention in academic circles, leading to a plethora 
of proposed definitions. However, a universally accepted definition of learning style is 
still lacking in the literature. Chevrier et al., (2000) delineated the definitions into three 
main frameworks. Consequently, learning styles can be understood as:

	(i)	 Learning-centered: In the light of this, we can reference the definition proposed by 
Keefe (1979) “ Learning styles refer to cognitive, affective and psychological behav-
iors that indicate how learners perceive, interact with and respond to the learning 
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environment”. According to the Dunn et  al. (1979)“learning style is the way each 
person begins to concentrate on, process, internalize, and retain new and difficult 
academic information”.

	(ii)	 Cognitive-centered: In this context, Reinert (1976) states that “an individual’s 
learning style is the way in which that person is programmed to learn most effec-
tively, i.e., to receive, understand, remember, and be able to use new information.”. 
Oxford (2001) believe that learning styles is “the general approaches that learners 
prefer to employ when acquiring knowledge, learning a new language, or solving 
problems”.

	(iii)	 Personality-centered: Within this category, Barbe et al. (1988) states that “learning 
style describes an individual’s relative ability to perform an academic task according 
to the main perceptual modalities”. According to the Grasha (1984)“Learning styles 
are personal dispositions that influence a student’s ability to acquire information, to 
interact with peers and teachers, and to participate in a learning experience”.

This variety of definitions and approaches has led to the development of multiple 
models for identifying learning styles over the years. Coffield et al. (2004) identified 71 
different learning styles models in the literature, reflecting the diversity of approaches. 
Among these models, the Kolb’s learning styles inventory (Kolb, 1976), Dunn and Dunn 
learning styles model (Dunn et al., 1979), and FSLSM (R. M. Felder & Silverman, 1988) 
are widely known and frequently utilized. These models offer valuable frameworks for 
understanding how learners process information and provide insights into their prefer-
ences and strengths.

Based on the extensive range of learning styles models identified by Coffield et  al. 
(2004), the FSLSM (Felder-Silverman Learning Style Model) stands out as a prominent 
and widely utilized framework (Essa et al., 2023; Raleiras et al., 2022). The FSLSM was 
developed by Richard Felder and Linda Silverman in 1988. It was initially introduced as 
a model for engineering learners, to capture learner learning preferences with regards to 
perception, input, processing and understanding through four dimensions (Fig. 1).

Felder and Silverman (Felder & Silverman, 1988) defined learning styles based on 
answering the four following questions:

(i)	What type of information does the learner preferentially perceive?

Perception (Sensing/Intuitive): Sensing learners tend to be patient with details and 
good at remembering facts. Intuitive learners prefer to grasp new concepts, and prefer 
to discover possibilities and relationships; they are more comfortable with abstractions, 
theories and mathematical formulations.

Fig. 1  FSLSM model
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	(ii)	 What type of sensory information is most effectively perceived?

Input (Visual/Verbal): Visual learners prefer teaching material when it is presented in 
form of pictures, diagrams, flow charts or videos. Verbal learners get more out of words: 
through written and spoken explanations.

	(iii)	 How does the learner prefer to process information?

Processing (Active/Reflective): Active learners prefer to retain and understand infor-
mation by doing something active with it, and prefer to work in groups, as this allows 
them to discuss and explain the information they have received. Reflective learners pre-
fer to think and absorb the information individually or in small groups.

	(iv)	 How does the learner characteristically progress toward understanding?

Understanding (Sequential/Global): Sequential learners prefer information to be pro-
vided in a logical progression of incremental steps, and tend to make small steps through 
learning material by clicking the “next/previous” buttons. Global learners have a ten-
dency to acquire knowledge through substantial leaps and often gain an understanding 
of the overarching concepts before delving into the finer details of a subject.

Each dimension consists of two opposite poles representing different learning styles. 
The learning style for an individual is generated by merging the poles of each dimension 
(Hasibuan et al., 2016). For example, in the FSLSM, the input dimension encompasses 
two distinct poles or learning styles: visual and verbal. These contrasting learning styles 
reflect the diverse ways in which the learner prefers to receive information. Figure 2 pro-
vides a visual representation of these two poles within the four dimensions.

To identify the degree of preference of learners for each dimension, the index of learn-
ing styles (ILS) questionnaire can be used (Felder & Solomon, 2006). This questionnaire, 
developed by Richard Felder and Barbara Soloman in 1991, consists of a 44-item (11 
items for each dimension) forced-choice instrument. Participants respond to the ques-
tionnaire by selecting their preferred option from each pair of items, indicating their 
inclination towards a particular learning style within each dimension. The responses are 
then compared, and an odd score value ranging from − 11 to 11 is assigned to indicate 
the degree of preference. Score − 3 to 3 represents balanced style on the two poles of the 

Fig. 2  Scales of learning styles
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dimension. Score 5 or 7 represents moderate preference for one pole of that dimension, 
and 9 or 11 strong preference for one pole of that dimension (Fig. 2).

Each pole has its own singularity and characteristics, indicating how learners prefer to 
interact with specific resources and perform specific activities.

The use of the FSLSM in this study is motivated by several compelling reasons. Firstly, 
the model has demonstrated its applicability in addressing fundamental scientific issues, 
making it well-suited for investigating learning styles in our context (Özpolat & Akar, 
2009). Secondly, the FSLSM has been widely recognized as the most appropriate choice 
for hypermedia courseware, indicating its compatibility with modern educational tech-
nologies (Carver et al., 1999; Essa et al., 2023; Graf & Kinshuk, 2007; Raleiras et al., 2022; 
Zhang et al., 2020). Thirdly, the dimensions of the FSLSM are distinct and independent, 
allowing for a comprehensive and nuanced description of learning styles (R. M. Felder 
& Silverman, 1988). Additionally, the model represents each dimension on a scale from 
− 11 to + 11, enabling a more precise depiction of learners’ preferences at a granular 
level (Graf & Kinshuk, 2007). fourthly, the Index of Learning Styles (ILS) questionnaire 
has been proven valid and reliable for assessing learning styles (Marosan et al., 2022).

The relevance of learning styles in education

Educational researchers acknowledge the inherent uniqueness of individual learners: no 
two learners are the same as regards their way to learn (Wood, 2009). Recognizing this 
variability is essential to designing effective instructional strategies that meet the diverse 
needs and preferences of learners. In order to reduce attrition and improve skill devel-
opment, instructional materials should be tailored to meet the needs of learners. This 
concept, known as the "meshing hypothesis" according to Pashler (2008), emphasizes the 
importance of aligning instructional strategies with learners’ preferences. An example 
of these differences is seen in learners’ preferences for information presentation. While 
some learners are comfortable with information presented in visual format (graphi-
cal representations), others prefer verbal explanations and have a stronger inclination 
towards retaining information through reading. Supporting this perspective, Claxton 
and Murrell (1987) emphasize the need for instructors to recognize and respect the dif-
ferences that learners bring in the classroom. To foster effective learning, they advocate 
for systematically crafted learning experiences tailored to match individual student’s 
learning styles. The more thoroughly the instructors understand the differences, the bet-
ter chance they have of meeting the diverse learning needs of all their learners (Felder & 
Brent, 2005).

This alignment of instructional methods with learning styles has tangible benefits. 
Many researchers assert that a recognizing and integrating learning styles in the class-
room can facilitate effective learning (Graf & Liu, 2009). By tailoring curricula around 
learning styles, academic achievement as well as the learners’ self-confidence can be 
improved (Reid, 2005; Sadeghi et al., 2012). It enhances learner satisfaction, augments 
students’ motivation and engagement, and even reduces the time required for learning 
(efficiency) (Dağhan & Akkoyunlu, 2012; Graf & Liu, 2009; Reid, 2005). According to 
Peacock, (2001) 81% of teachers believe that a mismatch between teaching and learning 
styles leads to learning failures, frustration and lack of motivation among learners.
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However, the idea of learning styles hasn’t been free from controversy, Numerous 
researchers and educators have expressed skepticism about the theory of learning styles. 
Some even argue that they might be a myth without solid scientific evidence (Dek-
ker et al., 2012; Kirschner, 2017; LeBlanc, 2018; Pashler et al., 2008; Riener & Willing-
ham, 2010). According to Coffield et  al. (2004), most of the criticism arises from the 
lack of a unified framework, given the diverse models in literature, causing confusion 
in their application. Pashler et al. (2008)stated that the practice of tailoring educational 
resources and activities based on learners’ learning styles lacked scientific validation. 
Popescu et al., (2007) argued that learning’s complexity surpasses mere learning styles. 
Moreover, they question whether learning styles have ever significantly influenced learn-
ing.They advocate for harnessing various models and their unique attributes for a holis-
tic approach. Newton and Miah (2017) highlighted out the risks of applying learning 
styles in education, emphasizing the danger of confining learners. For instance, a "visual 
learner" might feel discouraged tackling subjects that don’t align with their identified 
learning style, such as studying music.

Despite the numerous criticisms regarding learning styles, no alternatives have 
emerged. The plethora of models in literature underscores a widely held belief in the 
concept’s utility, stating that learners do have traits affecting how they learn (Essa et al., 
2023; Graf et al., 2012; Li et al., 2019; Suganya & Sheshasaayee, 2022).

Approaches to identify learning styles

There are two approaches to identify learning styles (Fig. 3), namely collaborative and 
automatic (Brusilovsky, 1996). The collaborative approach involves learners actively par-
ticipating in the process by completing a questionnaire that aligns with a specific learn-
ing style model. However, this approach is static in nature and has certain limitations. 
When the questionnaire is excessively lengthy, learners may provide answers hazardly, 
compromising the accuracy of the results. Additionally, learners may not be fully aware 
of the significance of the questionnaire, leading to a potential lack of commitment and 
attentiveness during its completion (Jackson, 1990).

Fig. 3  Collaborative and automatic detection of learning styles
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Furthermore, it is important to note that learning styles can vary and change depend-
ing on the learning pressure or the specific situation within the learning process (Cof-
field et al., 2004; Pashler et al., 2008). As a result, the static collaborative approach may 
not accurately capture the flexible and stable personal characteristics of learners (Kolb, 
1976). Learners’ preferences and styles may evolve over time, and relying on a static 
model may limit our understanding of their adaptive learning behaviors.

To overcome the limitations of using such questionnaires, researchers have proposed 
two main approaches for automatically identifying learning styles: the literature-based 
approach and the data-driven approach. These approaches are focused on collecting and 
analyzing traces that learners leave behind in order to identify learners’ learning styles.

Graf et al. (2008) first introduced a literature-based approach that uses the learner’s 
traces to get patterns about their learning styles This approach involves identifying pat-
terns in the data using simple rules in the form of "if…then…else" instructions defined 
to calculate learners’ learning styles (Ahmad et al., 2013; Latham et al., 2012; Scott et al., 
2014). The main advantage of this approach is both generic and applicable to data col-
lected from any courses (Dung & Florea, 2012). One limitation of this approach is the 
reliance on predefined rules in exhaustive way. The approach may also struggle with 
handling large volumes of data, requiring efficient data processing and analysis tech-
niques to identify meaningful patterns.

The data-driven approach aims to build a model that imitates a learning style question-
naire (Feldman et al., 2015). Instead of relying on explicit questionnaires, this approach 
utilizes artificial intelligence algorithms that take learners’ behaviors as input and gener-
ate their learning styles as output.

In this sense, many algorithms have been used in the literature, such as: (i) Bayesian 
technique (Halawa et  al., 2015; Maraza-Quispe et  al., 2019; Rasheed & Wahid, 2021), 
(ii) Neural network (Bajaj & Sharma, 2018; Ferreira et  al., 2018; Kolekar et  al., 2017), 
(iii) Decision tree method (Crockett et al., 2017; Karagiannis & Satratzemi, 2018; Sheeba 
& Krishnan, 2018), (iv) Naïve bayes (L. X. Li & Abdul Rahman, 2018; Maraza-Quispe 
et al., 2019), (v) deep learning algorithms (Alshmrany, 2022; Anantharaman et al., 2018; 
Mubarak et al., 2022).

One of the primary advantages of the data-driven approach is its utilization of real 
data to classify learners. By analyzing learners’ actual behaviors and interactions within 
the learning environment, the approach can provide accurate and real-time tracking of 
learners’ learning styles. This dynamic nature enables the detection of changes in learn-
ing styles as learners progress and adapt to different learning situations and context 
(Benabbes et al., 2023).

Educational data science and dashboard: leveraging data for enhanced education

The field of educational data science (EDS) holds immense promise in its ability to drive 
meaningful educational outcomes by using advanced data analysis techniques. Through 
the application of machine learning, data mining, and statistical analysis to educational 
data, EDS aims to enhance student learning performance, evaluate teacher effectiveness, 
address student retention and success, and inform educational policy and decision-mak-
ing (Romero & Ventura, 2017).
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One key mains of EDS is to enhance student learning performance. By analyzing stu-
dent records and academic data, EDS can identify patterns and trends that help identify 
factors influencing student achievement (Pratsri et al., 2022). For instance, it can uncover 
the impact of different teaching methodologies, classroom environments, or even socio-
economic factors on student outcomes (Suganya & Sheshasaayee, 2022). This knowledge 
enables educators to make data-driven decisions and tailor instructional strategies to 
meet individual student needs.

EDS also focuses on evaluating and improving teacher effectiveness (Swai et  al., 
2023). Through the analysis of teacher evaluations, classroom observations, and stu-
dent feedback, EDS can provide valuable insights into instructional practices that lead to 
improved student engagement and academic growth (Wengrowicz et al., 2022). By iden-
tifying effective teaching strategies, EDS can assist in teacher professional development 
efforts, ultimately enhancing overall educational quality.

Furthermore, EDS plays a role in addressing student retention and success. By examin-
ing data related to student attendance, participation, and socio-emotional factors, EDS 
can identify early warning signs of student disengagement or potential dropout risks. 
This information enables educators and administrators to intervene and provide tar-
geted support, thereby increasing student retention rates and fostering a more inclusive 
and supportive learning environment (Schofield, 2021).

Another area where EDS proves valuable is in the field of educational policy and deci-
sion-making. By analyzing large-scale educational data, such as national or international 
assessments, EDS can provide policymakers and educational leaders with evidence-
based insights. These insights can inform the development of targeted interventions, 
curriculum improvements, and resource allocation strategies to enhance overall educa-
tional quality and equity (Fig. 4).

Fig. 4  CRIPS Model (Kelleher et al., 2020; Martínez-Plumed et al., 2019)
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The Education Data Science lifecycle can be divided into six main steps:
Problem identification and understanding The first step is to identify and understand 

the problem that you are trying to solve. This involves understanding the business need, 
the different specifications, and the requirements.

Data collection The next step is to collect and understand the data that you will use to 
train your model. This data can come from a variety of sources, such as web server logs, 
social media data, data streams extracted from web APIs, databases, etc. Once you have 
collected the data, you need to perform exploratory analysis to better understand it.

Data preprocessing The third step is to prepare the data for use in model training. This 
involves data cleaning and feature extraction. Data cleaning is the process of removing 
errors and inconsistencies from the data. Feature extraction is the process of identifying 
the most important features in the data that will be used to train the model.

Modeling The fourth step is the modeling phase. This involves selecting a learning 
algorithm and its hyperparameters. A learning algorithm is a method for training a 
model. Hyperparameters are the settings of the learning algorithm.

Evaluation The fifth step is the evaluation phase. This involves testing and verifying 
the model and its parameters to ensure that it meets the objectives formulated at the 
beginning of the analysis. This phase is where the decision is made whether the model is 
robust enough and ready for deployment or if it needs reconfiguring.

Deployment The final step in the lifecycle is to operationalize and integrate the solu-
tion into the company in order to solve the original problem. This involves deploying the 
model into production and making it available to users.

The process of analyzing learning traces is a complex and iterative process, but it can 
be a valuable tool for improving learning. The main study in this article is a practical 
example of how the data science lifecycle (crips model) can be applied in the MOOC 
environment. This study used the lifecycle to develop a model that could predict learn-
ers’ learning styles. This model was then used to provide valuable support to teachers 
and instructors in gaining deep understanding of their learners’ preferences.

During the deployment phase of the data science lifecycle, one effective way to sup-
port teachers and instructors is through the use of dashboards. These dashboards serve 
as a means to communicate the insights generated throughout the data analysis process. 
By presenting key findings and visually representing relevant data, dashboards offer a 
user-friendly interface for educators to access and interpret the insights derived from 
the data analysis process. Our study demonstrates the significant impact of dashboard-
ing, or learning analytics, on enhancing learners’ educational experiences. user-friendly 
interface for educators to access and interpret the insights generated through the data 
analysis process. The upcoming section of the article will delve into a comprehensive 
exploration of these aspects.

This focus on using dashboards and learning analytics aligns with the field of Learn-
ing Analytics, which aims to address questions pertaining to improving learners’ edu-
cational experiences. Analytics provide insights at various levels to enable informed 
decision-making. Descriptive analytics, for instance, offer snapshots of variables, indi-
cating trends and current status, while predictive analytics utilize machine learning algo-
rithms to forecast future outcomes based on patterns derived from past data (Susnjak 
et al., 2022). By seamlessly integrating the data science lifecycle with learning analytics, 



Page 11 of 40Hmedna et al. Smart Learning Environments           (2023) 10:58 	

educators gain a deeper understanding of their learners’ needs and preferences, enabling 
them to make informed decisions and implement targeted strategies that enhance the 
overall learning experience.

Learning analytics, as described by Elias (2011) and Larusson and White (2014), 
provides valuable insights to users, such as teachers, about what transpires in a class, 
regardless of the activity type. In other words, learning analytics is defined as the effort 
to enhance learning through targeted data analysis. The goal is to collect and analyze 
learners’ interaction data, identify at-risk students early on, and improve the quality of 
the educational experience (Susnjak et al., 2022).

To effectively present the analyzed data, learning dashboards are commonly used. 
These dashboards integrate various indicators about the learner, learning process, and 
contexts, using visualization methods. In the field of education, data visualization plays a 
critical role in understanding, analyzing, and communicating learning-related informa-
tion. Visual representations, such as graphs and charts, simplify complex concepts and 
facilitate the establishment of connections between ideas (Ramaswami et al., 2022).

Educational dashboards serve multiple stakeholders, providing real-time monitor-
ing of student engagement, particularly beneficial in online environments with physi-
cal separation. They offer students greater visibility into their online learning behaviors, 
empowering them to make more informed study-related decisions. Additionally, person-
alized metrics facilitate self-reflection and encourage positive behavioral adjustments. 
For instructors, educational dashboards equipped with predictive analytics help identify 
at-risk students and enable timely interventions to improve course outcomes (Akçapınar 
et al., 2019; Queiroga et al., 2020).

Aligned with these concepts, our research focuses on the application of the educa-
tional data science process. Our article delves into the entire process of educational data 
science, elucidating how the integration of data analysis and visualization can effectively 
transform teaching practices and drive meaningful educational outcomes. Through 
our research, we aim to contribute to the advancement of teaching methodologies in 
the realm of MOOCs, equipping educators with the tools they need to unlock their full 
potential and create engaging learning experiences. By harnessing the power of data ana-
lytics and dashboards, educators can gain valuable insights, make informed decisions, 
and ultimately improve the overall learning experience for their students.

Decoding learners’ preferences: methodological approach to identifying 
learning styles in MOOCs
In this section, we provide an outline of our proposed approach for identifying learning 
styles in MOOCs. We first present an overview of our solution and then delve into the 
detailed phases of our methodology.

The main aim of our work is to propose a predictive model for learning styles. Our 
process is composed of three stages, as shown in Fig. 5. The first phase of our process 
consists of data collection (dataset). The data that are gathered are related to the behav-
ioral traces of the learners during the learning process. To ensure the reliability and use-
fulness of the collected data, a pre-processing step that involves cleaning and filtering 
the raw data was performed. This step helps eliminate any inconsistencies or noise that 
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may affect the accuracy of our model. Additionally, we perform a feature selection step 
to identify the most relevant and informative attributes from the collected data.

In the second phase of our process, we construct a predictive model that can iden-
tify learning styles based on the processed data. To achieve this, we used clustering and 
classification techniques and performed a series of experiments and an evaluation of the 
model.

In the third phase, we create a visualization tool called MOOCLS that can be used to 
give further recommendations to teachers and instructors.This tool utilizes the output 
of our predictive model to offer insights regarding the learning style preferences of indi-
vidual learners and recommendations about the learning content of the course.

In our previous work (Hmedna et  al., 2019, 2020) we presented an overview of our 
learning styles prediction model. Nevertheless, in order to ensure a comprehensive 
understanding of the current paper and to improve comprehension of the entire pro-
cess employed we will delve into several important steps of our learning styles prediction 
model in subsequent sections. That being said, the current paper is centered on the steps 
that are visually highlighted in blue, as depicted in Fig. 5.

Dataset and data preparation

Dataset description

The dataset used in this research work, was collected from edX course “Statistical Learn-
ing” (session Winter 2015 and 2016), via a data-sharing agreement with the Stanford 
University. The course emphasized the instruction of both supervised and unsupervised 
learning algorithms, along with the underlying theoretical concepts. This comprehensive 
curriculum aimed to equip learners with the knowledge and skills necessary to under-
stand and apply these algorithms in practice. The course spanned nine weekly sessions, 
each consisting of six to eleven lecture videos, readings, and quizzes. To receive a state-
ment of accomplishment, learners have to get an overall course grade of 50% or higher. 
Table 1 provides an overview of the dataset, highlighting the number of enrolled learners 
and the events recorded from these learners.

Whenever a learner interacts with the MOOC platform, a clickstream event is gen-
erated. These events capture various actions and activities performed by learners while 
engaging with the course content and platform. Each event is associated with spe-
cific attributes that provide valuable information about the nature and context of the 

Fig. 5  Stages of the methodology
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interaction (Benabbes et al., 2023). These events capture different types of interactions, 
including reading outlines, viewing video lectures, attempting graded quizzes, and par-
ticipating in forum discussions. Each event is described by several attributes, such as the 
type of interaction (event_type), the date and time of the interaction (timestamp_event) 
as well as the learner identifier (anon_screen_name).

Before using the data to train the model, data preprocessing was performed. Raw data 
contains of noisy data, this noise affects the learning ability of the machine-learning 
model, Therefore, before using the data to train our model, it must be cleaned, formatted, 
and restructured — this is typically known as preprocessing (Mazzola & Mazza, 2009). 
Fortunately, for our dataset, we are not dealing with missing values, however, there are 
some qualities about certain features that must be adjusted. In this context, we reduced 
the number of “event_type” from 7550 distinct event_type to 55 after preprocessing.

The database was analyzed in order to detect outliers corresponding to learners with 
anomalous behaviors (values far out of the typical range). These outliers can have a nega-
tive impact on the results of our analysis (the model can be trained more slower, augment 
the complexity of the model, higher risk of overfitting) (Fayyad et al., 1996). Concerning 
the technical part, we tested two unsupervised algorithms for anomaly detection, isola-
tion forest or Iforest (Liu et  al., 2008) and Local Outlier Factor (LOF) (Breunig et  al., 
2000). The isolation forest algorithm was chosen for the results it offers and its simplicity 
of implementation.

Isolation Forests are based on the principle that anomalies are few and different from 
normal instances. They utilize the aggregation of many trees called isolation trees, where 
each tree uses a random sample of observations and selects variables and thresholds for 
division randomly.

To implement this algorithm, we represented each learner by a set of characteristics, 
namely:

•	 “# events”: The total number of events each learner was generated.
•	 “# weeks”: The total number of weeks to which a learner has accessed.
•	 “certified”: Indicates if the learner received the certificate of completion.

As a result, 166 learners have been identified as anomalies. An exploration of the 
traces of these learners showed that the main cause of these anomalies was initially due 
to a bug in the application (openEdx) that iteratively sends the same request, causing the 
contamination of the traces of these learner’s traces.

Feature engineering: characterizing learners’ learning styles

In the feature selection phase, the goal is to determine which features from the raw data are 
most relevant for creating a robust model. Selecting relevant features associated with each 

Table 1  A description of MOOC dataset used in this study

Session # Learners # Events Launch date End date

Winter 2015 32,209 18 475 724 2015–01–19 2015–04–06

Winter 2016 20,526 12 363 613 2016–01–12 2016–04–06
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learning style is difficult, time-consuming and requires expert multidisciplinary knowledge. 
Most of the methods proposed in the literature use the linear correlation between the fea-
tures (Beal, 2015). Linear correlation is a statistical measure that quantifies the strength and 
direction of the relationship between two variables. By examining the correlation between 
features and the target variables of interest, researchers can identify the most influential fea-
tures for prediction or analysis. High correlation suggests that changes in one feature cor-
respond to predictable changes in another, making it a useful criterion for feature selection.

In our study, the feature selection process is guided by prior research conducted by Gar-
cia et al. (2007), Graf (2007), Latham et al. (2012), and Villaverde et al. (2006), as shown in 
Table 2. One of the commonly used methods in addressing this phase of process is Back-
ward Feature Elimination (BFE) (Kohavi & John, 1997). It is an iterative process that pro-
gressively eliminates non-significant features. The BFE process begins with fitting a model 
that incorporates the full set of features. Subsequently, a certain proportion of the less dis-
criminating features are removed based on a set criterion. With each iteration of feature 
removal, we assessed cluster compactness and separation. Compactness measures intra-
cluster closeness, while separation measures inter-cluster distinction. By evaluating these 
metrics in each iteration, we aimed to find a balance between removing irrelevant features 
and maintaining optimal clustering quality.

Table 2 provides an overview of the features considered in our study, based on the afore-
mentioned research methods. By following this approach, we aim to identify the subset 
of features that best contribute to the predictive power and interpretability of our model, 
thereby enhancing the effectiveness of our analysis in the context of learning styles and 
education.

In addition to feature selection, another critical aspect of data preprocessing is feature 
scaling, as highlighted by Rebala et al., (2019). Scaling is particularly important for machine 
learning algorithms, as their performance can be sensitive to the magnitude of feature val-
ues. If features are not scaled, certain features with larger values can disproportionately 
influence the model’s output, potentially leading to biased or inaccurate results. To address 
this issue and ensure a uniform distribution of feature values, we apply the MinMax scaling 
method (Eq. 1). This method involves normalizing numerical values to a consistent scale, 
typically ranging from − 1 to 1.

where xmin and xmax are the minimum and maximum values, respectively, of the feature x 
in the dataset. To carry out this normalization, the MinMaxScaler function provided by 
sklearn was used.

In summary, our data preprocessing pipeline encompasses both feature selection, guided 
by prior research, and feature scaling using the MinMax method. By selecting relevant 
features and ensuring uniformity in their values, we aim to enhance the performance and 
interpretability of our machine learning model in the context of this study.

(1)x
′
=

x − xmin

xmin − xmax
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Table 2  Features set used for the analysis

Features Description Study

Villaverde 
et al., (2006)

Latham et al., 
(2012),

Garcia et al., 
(2007)

Graf, (2007)

Processing

 Active # pause_video Number of pauses 
videos

*

# problem_vis-
its

Number of visits of 
problems

* * *

Problem_stay Total time spent on 
problems

* * *

# problem_sub-
mit

Number of assign-
ment problems 
submited

* *

Δ problem_
submit

Aver-
age # of assign-
ment problems 
submited

* *

# forum_post Number of forum 
posting

* * * *

 Reflective # show_answer Number of visits 
of the answers of 
problems

* * *

Show_answer 
_stay

Total time spent 
reading the 
answers problems

* * *

Δ show_answer Average time 
spent reading the 
answers problems

* * *

# outline_visit Number of visits of 
outlines

*

# view_post Number of viewing 
posts in forum

* *

Perception

 Sensing # example_visit Number of visits of 
examples

* * *

example_stay Total time spent on 
examples

* * * *

# problem_visit Number of visits of 
problems

* * *

problem_stay Total time spent on 
problems

* * *

# show_answer Number of visits 
of the answers of 
problems

* * *

Show_answer_
stay

Total time spent 
reading the 
answers problems

* * *

# seq_prev Number of 
time the learner 
navigates to the 
previous unit in a 
sequence

* *

# concret_
material

Number of visits of 
concret material

* * *
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Table 2  (continued)

Features Description Study

Villaverde 
et al., (2006)

Latham et al., 
(2012),

Garcia et al., 
(2007)

Graf, (2007)

 Intuitive # seq_visit Number of visits 
of units

*

seq_stay Total time spent 
on units

*

# forum_post Number of forum 
posting

* * * *

# view_post Number of viewing 
posts in forum

* *

# outline_visit Number of visits of 
outlines

*

Input

 Visual # video_visit Num-
ber of viewed vid-
eos

*

video_stay Total time spent on 
viewing videos

*

# play_video Number of play 
videos

*

# hide_tran-
script

Number of hiding 
video transcripts

*

 Verbal # show_tran-
script

Number of 
showing video 
transcripts

*

# speed_
change_video

Number of chang-
ing video speed

*

# view_post Number of viewing 
posts in forum

* *

# forum_post Number of forum 
posting

* * *

# forum_stay Total time spent 
reading forum 
posts

# outline Number of visits of 
outlines

*

Understanding

 Sequential # seq_next Number of time 
the learner navi-
gates to the next 
unit in a sequence

* *

# seq_prev Number of 
time the learner 
navigates to the 
previous unit in a 
sequence

* *

Δ sequential_
navig

 = (# seq_next + # 
seq_prev) / (# 
seq_next + # seq_
prev + # seq_goto)

* *
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From events logs to insights: a methodology through machine learning for learning style 

detection

Unsupervised modeling: uncovering clusters of learning styles

In this phase, we rely on the features obtained from the previous step of feature selec-
tion to perform clustering analysis. The main objective is to group learners based on 
their level of preference for each learning style, with the aim of identifying clusters 
where learners within the same group exhibit higher similarity to each other compared 
to learners in other clusters (Li et al., 2020). To achieve this, we employ the widely used 
K-means algorithm, which is known for its simplicity and effectiveness in clustering 
tasks (Hartigan & Wong, 1979).

A major challenge in configuring the k-means algorithm is the choice of the optimal 
value of clusters (k). Based on the existing solutions in the literature, to estimate the 
number k, we have chosen to use the elbow method (Kodinariya & Makwana, 2013). 
This method remains simple and offers good results, even though it requires a subjective 
judgement as to the location of the elbow.

This method involves plotting a graph with the number of clusters (K) on the x-axis 
and the sum of squared distances of samples to the nearest cluster center (SSE) on the 
y-axis. The resulting curve typically exhibits an "elbow" shape, and the point of inflection 
signifies a trade-off between cluster compactness and separation.

By applying the elbow method, we have determined that the optimal number of clus-
ters for each session and learning style is four. The assignment of cluster labels is based 
on the average feature values associated with each learning style. Learners with a strong 
preference for a specific learning style exhibit higher average feature values and are more 
likely to be grouped together in the same cluster.

Table 2  (continued)

Features Description Study

Villaverde 
et al., (2006)

Latham et al., 
(2012),

Garcia et al., 
(2007)

Graf, (2007)

# dist_unit_visit Number of distinct 
unit (pages) visted

*

# show_answer Number of visits 
of the answers of 
problems

* * *

# page_close Number of closed 
pages

*

 Global # progress_
show

Number of visits of 
progress page

*

# seek_video Number of seek 
in video

*

# seq_goto Number of time 
the learner skip to 
specific units

* * *

Δ global_navi-
gation

 = # seq_goto / 
(# seq_next + # 
seq_prev + # 
seq_goto)

* * *

# outline Number of visits of 
outlines

*
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Cluster analysis provides insights into learner preferences based on the average values 
of features associated with each learning style (Song & Wang, 2023). This analysis allows 
us to assign cluster labels to learners based on their level of preference for a specific 
learning style.The cluster label is defined based on the average value of the features asso-
ciated with each learning style. Learners who have a strong preference for a particular 
learning style have a higher average value for all features and are more likely to interact 
with the platform than learners in other clusters. Their learning style preference aligns 
closely with the features associated with that particular style. On the other hand, learn-
ers in other clusters may have weaker preferences or exhibit a balance of multiple learn-
ing styles.

Our clustering analysis (Fig. 6) has resulted in the following labels for the identified 
clusters: Cluster 1 represents learners with a "very weak preference," Cluster 2 repre-
sents learners with a "weak preference," Cluster 3 represents learners with a "moderate 
preference," and Cluster 4 represents learners with a "strong preference."

Interestingly, the largest number of learners are grouped into the "very weak" prefer-
ence clusters. This observation can be attributed to the high drop-out rates commonly 
observed in Massive Open Online Courses (MOOCs). Previous studies (Kloft et  al., 
2014; Li et al., 2017; Onah et al., 2014) have highlighted the challenges and factors con-
tributing to drop-out rates in MOOCs. The prevalence of learners with a "very weak 
preference" suggests that a significant portion of learners may disengage or struggle to 
align their learning styles with the course content and delivery.

After having clustered learners according to their preferences for each learning style, 
the quality of this clustering should be assessed, despite the fact that in unsupervised 
learning it is difficult to evaluate the performance of a clustering model, especially when 
there are no reference labels (Shutaywi & Kachouie, 2021). To overcome the absence 
of reference labels, internal evaluation criteria are utilized to assess the quality of the 
obtained clusters based on two main criteria: cluster compactness, which measures the 
similarity among samples within a cluster, and cluster separability, which quantifies the 
distinction between a cluster and others (Liu et al., 2010). Various indices exist in the 
literature to quantify these criteria. In this study, we employ the Calinski-Harabasz (CH) 
index (Caliński & Harabasz, 1974) and the Silhouette (SI) index (Rousseeuw, 1987) for 
evaluation.

Fig. 6  Clustering results of the ‘‘Winter 2015’’ session: a active; b reflective; c visual; d verbal; e sequential; f 
global; g intuitive and h sensing learning style
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The CH index calculates a normalized ratio of inter-cluster dispersion (separability) to 
intra-cluster dispersion (compactness). A higher value of the CH index indicates better 
clustering quality. The Silhouette Index (SI) is a widely-used internal validation index 
that measures both cluster separation and compactness. The SI index ranges from − 1 
to 1, with values closer to 1 indicating better clustering quality, indicating that the points 
are closer to each other within the same cluster and farther away from other clusters.

Based on our evaluation of the CH and SI indexes across different clustering algo-
rithms (k-means, MiniBatch, Birch, Agglomerative), our results indicate that k-means 
demonstrated superior performance compared to the other algorithms (Table  3). This 
finding aligns with the results from a systematic literature review by Essa et al. (2023). 
Their comprehensive review, spanning from 2015 to 2022, highlighted the predominant 
use of k-means in the detection of learning styles in various studies.

Aggregation process

In the Felder–Silverman Learning Style Model (FSLSM), the poles of each dimension are 
opposed (Felder & Silverman, 1988; Graf et al., 2008), as shown in Fig. 2. Therefore, when 
there is a strong occurrence of a specific behavior that indicates one pole, a low occur-
rence of the same behavior indicates the other pole, and vice versa (Graf & Liu, 2009). 
For example, learners with a strong active learning style also show a weak preference for 

Table 3  Computed Calinski-Harabasz & Silhouette index (best results bolded)

Validation 
index

Calinski-Harabasz (CH) Silhouette (SI)

Learning 
styles

K-means MiniBatch Birch Agglomerative K-means MiniBatch Birch Agglomerative

Session 2015
 Active 182,350.04 182,096.07 87,462.00 164,592.11 0.80 0.80 0.74 0.79

 Reflec-
tive

81,988.04 81,734.32 29,448.13 66,986.25 0.76 0.76 0.71 0.75

 Sensing 73,109.54 71,040.24 64,871.41 57,600.90 0.73 0.76 0.77 0.75

 Intuitive 27,146.78 25,250.56 14,583.55 22,774.94 0.68 0.72 0.77 0.61

 Visual 123,760.92 114,153.13 71,621.93 111,571.95 0.67 0.72 0.78 0.65

 Verbal 33,756.19 31,552.79 22,630.88 30,930.14 0.70 0.60 0.77 0.64

 Sequen-
tial

23,9064.22 239,022.98 218,663.28 232,308.86 0.81 0.80 0.80 0.80

 Global 26,101.06 24,182.84 18,263.43 22,722.22 0.82 0.74 0.80 0.80

Session 2016
 Active 102,957.48 93,535.52 53,426.37 73,219.40 0.77 0.77 0.71 0.75

 Reflec-
tive

52,268.05 51,947.40 32,443.41 43,995.80 0.76 0.76 0.73 0.73

 Sensing 44,779.28 44,256.98 39,460 38,913.64 0.72 0.72 0.75 0.74

 Intuitive 16,893.7 14,158.7 9,936.57 15,121.62 0.70 0.43 0.78 0.74

 Visual 92,224.74 91,347.66 47,077.40 81,402.06 0.68 0.70 0.76 0.75

 Verbal 15,951.95 9,562.31 4,123.77 15,085.92 0.76 0.74 0.94 0.75

 Sequen-
tial

177,096.72 175,840.89 154,747.88 170,035.39 0.81 0.80 0.80 0.80

 Global 18,222.55 15,414.20 14,687.96 14,329.18 0.83 0.81 0.82 0.80
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a reflective learning style. If the preferences are similar (either strong or weak), the learn-
ing style is balanced.

In order to label our dataset according to this scale of preferences (strongpole1, mod-
eratepole1, balanced, moderatepole2, strongpole2), we propose a grid called the “balance of 
learning styles” (Fig. 7), which consists of adding the two degrees of preferences (prefer-
encepole1, preferencepole2) relative to each dimension.

Table 4 presents an example that demonstrates the application of our balance for the 
input dimension. It showcases how the degrees of preferences (preferencepole1 and 
preferencepole2) are combined to determine the corresponding learning style label. This 
table serves as an illustration of how the balance of learning styles approach is employed 
in our study for labeling purposes.

Each learner is represented as a feature vector. After merging the two pole feature vec-
tors using the balance of learning styles grid, we obtain a global feature vector dimen-
sion. Figure 8 provides a visual representation of this merging process.

Fig. 7  Balance of learning styles

Table 4  Balance of learning styles: input dimension

Visual LS

Very weak Weak Moderate Strong

Verbal LS
 Very  weak Balanced Moderate visual Strong visual Strong visual

 Weak Moderate verbal Balanced Moderate visual Strong visual

 Moderate Strong verbal Moderate verbal Balanced Moderate visual

Strong Strong verbal Strong verbal Moderate verbal Balanced

Fig. 8  The aggregation process
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The aggregation phase allows us to generate four labeled datasets each of which is 
related to a given dimension. Table 5 shows the distribution of classes. It is important to 
note that the datasets are multi-class and unbalanced, meaning that the data points are 
not evenly distributed among the different classes.These datasets will be used as input to 
the predictive models, as described in the next section.

Supervised modeling: predictive models for identifying learners’ learning styles

In this paper, we compare several classifiers to assess their performance for the identi-
fication of learning styles: decision tree (DT), random forest (RF), k-nearest neighbor 
(KN) and neural network (NN). These classifiers were chosen because of their large use 
and good performance in similar research papers.

To conduct the evaluation, the dataset was divided into four separate datasets, each 
corresponding to a dimension of the Felder-Silverman Learning Style Model (FSLSM). 
For each dataset, a training set and a testing set were created.

In the context of machine learning algorithms, the selection of appropriate hyperpa-
rameters is crucial for achieving optimal model performance (Duong, 2019). Hyperpa-
rameters are considered as properties of an algorithm that need to be defined prior to 
training a model. To determine the best combination of hyperparameters from a set of 
possibilities, a grid search approach was utilized, coupled with tenfold cross-validation.

By performing a grid search, we systematically explored various parameter combina-
tions to identify the configuration that yielded the highest classifier performance. The 
inclusion of cross-validation ensured that the models were validated on multiple sub-
sets of the data, reducing the risk of overfitting and increasing the generalizability of the 
results.

The outcomes of the grid search and cross-validation process are summarized in 
Table 6, which presents the performance metrics for each classifier model. These results 
provide valuable insights into the effectiveness of different parameter settings and assist 
in selecting the most appropriate configuration for future applications.

After the development of the classification models, the subsequent step involved 
evaluating their performance on unseen test data. To assess the models’ effectiveness, 
we employed four commonly used evaluation metrics: accuracy, precision, recall, and 
F1-score.

Considering the highly unbalanced nature of the dataset, it is crucial to employ 
evaluation metrics that can effectively handle class imbalance. In this context, the use 
of macro-precision and micro-precision metrics proves to be valuable for assessing 
the performance of our models (Tharwat, 2018). These metrics specifically account 

Table 5  The distribution of classes in each datasets

Strong Moderate Balanced Moderate Strong

Active 2171 7297 40,128 2849 124 Reflective

Visual 3411 8888 39,759 486 25 Verbal

Sensing 761 4566 45,650 1564 28 Intuitive

Sequential 3753 18,333 30,213 263 7 Global
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for the imbalanced distribution of classes in the data and provide a comprehensive 
evaluation of the models’ predictive capabilities.

Having explored the methodology and evaluation process, we now turn our atten-
tion to the core of our study: predicting the learning styles of students in a MOOC. In 
the subsequent analysis, we will delve into the performance of the developed models 
across the four datasets.

Assessing the performance of the developed models across all four datasets, it is 
evident that they let to favorable results (Table 7).

However, upon close examination of the performance metrics showcased in 
Tables 8, 9, 10 and 11, it is noted that among all the developed models, the decision 
tree (DT) classifier consistently demonstrated the highest level of performance.

This finding strongly emphasizes the relevance and suitability of the DT classifier for 
our specific study objectives. Its superior performance underscores its efficacy in accu-
rately predicting and understanding students’ learning styles within the context of our 
research.

As mentioned previously, the four datasets are highly unbalanced. We therefore used 
macro and micro-precision indexes to assess the quality of our classifiers. The results 
reveal that the DT handles unbalanced data better than the other classifiers. These 

Table 6  Configuration of algorithms adopted in each datasets

Model Hyper-parameters Datasets

A/R S/I V/V S/G

DT Max_depth 8 7 8 7

Criterion Entropy Entropy Entropy Entropy

Max_features None None None None

RF N_estimator 7 10 7 7

Max_depth 8 7 8 8

KNN N_neighbors 50 50 50 50

Leaf_size 1 1 1 1

Algorithm Auto Auto Ball_tree Auto

NN Hidden_layer_size 7 7 8 8

Max_iter 500 500 500 500

Table 7  Evaluation metrics

Metric Formula Description

Accuracy ACC =

∑n
i=1

TPi∑n
i=1

TPi+FNi

The percentage of predictions that are correct

Precision Pr ecisioni =
TPi

TPi+FPi
The percentage of positive predictions that are correct

Recall Recalli =
TPi

TPi+FNi
The percentage of positive cases that were predicted as positive

F1-score F1−scorei =
2×P×R
P+R

The Harmonic mean of precision and recall. P represents preci-
sion and R represents recall

Micro-precision Microprecision =

n
i=1

TPi
n
i=1

TPi+FPi

The average precision of all classes

Macro-precision Macroprecision =

∑n
i=1

precisioni
n

The sum of each class precision divided by the number of classes
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results support our finding that the DT is the most suitable and accurate classifier for 
predicting learning styles.

The outcomes obtained from our proposed model offer valuable applications in vari-
ous contexts. One significant application involves assisting learners in comprehend-
ing their learning styles, enabling them to identify their strengths and weaknesses in 
the learning process. By emphasizing their weaknesses, learners can adopt targeted 

Table 8  Results of prediction models—Perception dataset (best predicted result of the model are 
bolded) 

Algo Avg. accuracy Avg. precision Avg. recall Avg. f1-score Avg. micro-
precision

Avg. 
macro-
precision

DT 0.97 0.97 0.97 0.97 0.97 0.88

RF 0.94 0.94 0.94 0.93 0.94 0.71

NN 0.97 0.97 0.97 0.97 0.96 0.91
KNN 0.90 0.90 0.91 0.89 0.90 0.60

Table 9  Results of prediction models—Processing dataset (best predicted result of the model are 
bolded)

Algo Avg. accuracy Avg. precision Avg. recall Avg. f1-score Avg. micro-
precision

Avg. 
macro-
precision

DT 0.990 0.99 0.99 0.99 0.99 0.98
RF 0.988 0.99 0.99 0.99 0.99 0.98
NN 0.979 0.98 0.98 0.98 0.98 0.95

KNN 0.809 0.78 0.81 0.87 0.81 0.54

Table 10  Results of prediction models—Input dataset (best predicted result of the model are 
bolded)

Algo Avg. accuracy Avg. precision Avg. recall Avg. f1-score Avg. micro-
precision

Avg. 
macro-
precision

DT 0.984 0.98 0.98 0.98 0.98 0.96
RF 0.961 0.96 0.96 0.96 0.96 0.93

NN 0.953 0.95 0.95 0.95 0.95 0.67

KNN 0.881 0.88 0.88 0.88 0.88 0.64

Table 11  Results of prediction models—Understanding dataset (best predicted result of the model 
are bolded) 

Algo Avg. accuracy Avg. precision Avg. recall Avg. f1-score Avg. micro-
precision

Avg. 
macro-
precision

DT 0.984 0.98 0.98 0.98 0.98 0.96
RF 0.961 0.96 0.96 0.96 0.96 0.93

NN 0.953 0.95 0.95 0.95 0.95 0.67

KNN 0.881 0.88 0.88 0.88 0.88 0.64
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strategies to enhance their learning efficiency and effectiveness (Li & Zhou, 2018). This 
self-awareness empowers learners to tailor their approaches and allocate resources more 
effectively, leading to optimized learning outcomes.

Additionally, the utilization of the proposed model, which is built upon the traces gen-
erated by learners’ interactions with MOOC platforms, opens up possibilities for per-
sonalized learning path recommendations. By leveraging the identified learning styles 
of individuals, the model can suggest specific learning paths that align with their prefer-
ences and needs. These recommendations can include tailored instructions, activities, 
and resources that cater to the unique learning style of each individual learner. This per-
sonalized approach not only enhances learner engagement but also promotes effective 
learning by ensuring that the content and activities are relevant and meaningful to the 
learner’s preferred style of learning (Li & Zhou, 2018).

Moreover, the introduction of the proposed model may provide valuable support to 
teachers and instructors in gaining a deep understanding of their learners’ preferences. 
It enables them to customize their instructions and deliver content in a format that 
aligns with the specific learning styles of individual students, rather than employing a 
one-size-fits-all approach. As emphasized by Claxton and Murrel, (1987), instructors 
should be attuned to the diverse needs of learners and strategically design learning expe-
riences that cater to their unique learning styles, ultimately fostering effective learning 
outcomes. By utilizing the insights generated by the model, teachers can gain a com-
prehensive view of their students’ preferred learning styles. Armed with this knowledge, 
they can thoughtfully and systematically craft learning experiences that are tailored to 
meet the specific needs of each student. This personalized approach not only enhances 
student engagement but also optimizes the learning process by presenting content in a 
manner that resonates with the individual learning preferences of each student.

In the subsequent sections of this work, our focus will revolve around addressing the 
needs of teachers and instructors. Specifically, we aim to provide a solution that can 
assist educators in leveraging learning analytics to personalize the learning experiences 
of their students. To achieve this, we propose of a tool called MOOCLS (MOOC Learn-
ing Styles), that we explore in the following section.

From events to visual insights: leveraging MOOCLS for learning style 
visualization
Empowering stakeholders with actionable insights: overview

Visualization and dashboard tools have emerged as essential components in the field of 
education, offering a multitude of benefits and advantages (Susnjak et al., 2022). These 
tools enable stakeholders (students, educators, instructional designers, administrators) 
to gain a holistic understanding of student progress and performance, allowing for the 
identification of their strengths and weaknesses. By visualizing data such as assessment 
scores, attendance records, and engagement metrics, teachers can discern patterns and 
trends, leading to targeted interventions and personalized support (Martin & Sherin, 
2013). This proactive approach to monitoring and analysis enhances the effectiveness of 
teaching strategies, ultimately fostering student success and achievement.

As discussed in section  “Approaches to identify learning styles” visualization tools 
have the potential to significantly contribute to educational research by providing 
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stakeholders with valuable insights and data-backed evidence for decision-making. By 
visualizing key performance indicators (KPI) and trends, stakeholders can identify sys-
temic challenges, evaluate the effectiveness of interventions. The visual representation 
of data simplifies complex information, enabling stakeholders to comprehend and com-
municate the impact of their actions more effectively.

In line with leveraging visualization for educational research, MOOCLS (which stands 
for “MOOC Learning Styles”) was developed based on an approach to the automatic 
identification of learning styles. In this section, we present the underlying motivation 
behind MOOCLS, its technical architecture, and describe the functionalities of our 
scheme and its validation from a user perspective.

The motivation behind MOOCLS stems from the recognition that understanding 
learners’ preferences in learning styles can assist teachers in tailoring their pedagogi-
cal materials. Instead of assuming that all learners are alike and providing the same 
resources to everyone, identifying learning style preferences offers valuable informa-
tion about individual needs. Learners who have less interest in using technology or who 
receive resources that are not aligned with their learning styles may feel frustrated in 
such an environment, increasing the risk of course dropout (Chang et al., 2015). Thus, 
personalized and adaptive learning can be an effective solution to maintain learners’ 
interest.

The primary objective of MOOCLS is to empower teachers by providing them with a 
visualization tool that predicts and identifies participants’ learning styles. This informa-
tion enables teachers to intervene appropriately during the current or upcoming session, 
ensuring effective course improvement and the design of learning resources that best 
suit each learner’s needs and characteristics.

The technical architecture of MOOCLS involves leveraging machine learning algo-
rithms and data analysis techniques (Sect.  “Decoding Learners’ preferences: methodo-
logical approach to identifying learning styles in MOOCs”). By collecting and analyzing 
data on learners’ interactions with the online course platform, MOOCLS generates pre-
dictions about their learning styles. These predictions are then presented to teachers 
through a user-friendly visualization tool.

The functionalities of MOOCLS include learner profile analysis, learning style pre-
diction, and recommendations for adapting teaching strategies and resources. Teachers 
can gain insights into learners’ preferences, strengths, and weaknesses, allowing them to 
make informed decisions regarding instructional approaches.

User interaction with MOOCLS

MOOCLS is a dynamic web application that is accessible via a browser and does not 
require prior installation. The overall functions of the platform are realized via PHP 
and MySQL, and we also used Highcharts JavaScript library, which is a tool for devel-
oping interactive charts. MySQL was used as a relational database engine to store the 
features of the learners and their predicted learning styles. This section presents a 
brief description of the features of MOOCLS in terms of user interaction.

After logging into MOOCLS, users are greeted with a page displaying a compre-
hensive list of available courses (Fig.  9). This empowers teachers and instructors 
to choose a particular course they are interested in and explore the distribution of 
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learning styles among the enrolled learners. By selecting a specific course, they gain 
access to visualizations that depict how the learners’ learning styles are distributed 
within that course.

The home page of MOOCLS provides users with an informative overview of the 
MOOC (Massive Open Online Course) data (Fig.  10). It presents KPIs such as the 
total number of weeks the course spans and the number of learners enrolled in the 
course. Additionally, the home page offers visualization capabilities to showcase the 
distribution of learners across each dimension of the FSLSM. This allows teachers to 
gain insights into how learners are distributed in terms of their learning preferences 
and styles. Furthermore, the home page provides valuable information regarding the 
number of certified learners, giving educators a clear understanding of the achieve-
ment levels within the course.

To delve into the data related to each dimension in greater detail, the teacher can 
access individual pages dedicated to each dimension. Let’s take the example of the 
"Processing" dimension. By clicking on the "Processing" link in the side menu, the 
teacher can navigate to the page specifically designed for this dimension.

Once loaded, the page shows the distribution of learners is visually presented in 
relation to the features associated with the "Processing" dimension (Fig. 11). This vis-
ualization helps the teacher understand how learners are distributed across different 
aspects of their processing styles.

Moreover, the page allows for additional filtering options to display only the dis-
tribution of certified learners, providing insights into the performance of those who 
have obtained certification. In the visualization, each dot on the chart represents an 
individual learner and is uniquely identified by their learner ID. The learner ID serves 
as a reference point for further analysis and discussion. This level of granularity allows 
the teacher to examine individual learners’ behaviors and characteristics within the 
"Processing" dimension, aiding in personalized instruction and support.

In addition to the aforementioned features, the page offers advanced customization 
options for the chart, allowing users to finely tailor the visualization to their specific 
needs. One such option is the ability to modify the X and Y axes, enabling the display 
of various metrics related to the learner. With this enhanced flexibility, educators can 
choose from a range of parameters to represent on the axes. This allows for analyz-
ing how learners behave and position themselves in relation to specific variables and 

Fig. 9  List of cours
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pedagogical materials, which can provide valuable insights for teaching and pedagogical 
adaptation.

By clicking on a node representing a particular learner, the teacher gains access to 
more detailed information about that learner within the specific dimension being ana-
lyzed. This enables a closer examination of the learner’s behaviors, characteristics, and 
performance metrics in relation to that dimension (Preprocesing here).

The page is also providing teachers and instructional designers with a valuable set 
of recommendations aimed at improving their course design and teaching methods 
(Fig. 12). These recommendations are the result of a thorough review of pertinent litera-
ture, encompassing evidence-based practices within the realm of education.

These recommendations may encompass various aspects, including instructional 
strategies, assessment techniques, content delivery, and learner engagement. For 
instance, educators may be encouraged to incorporate visual hands-on activities for 
learners with a preference for visual processing. It is important to note that, as the 
field of education continually evolves, these recommendations are subject to ongoing 
refinement in the medium term. As new research emerges and practical insights are 
gathered, the recommendations will be further improved to ensure their effectiveness 
and relevance in optimizing course design and teaching methodologies.

For a more comprehensive view of an individual learner, clicking on the learner 
ID provides a global perspective (Fig.  13). However, it is important to note that all 
learner data is anonymized to ensure data privacy and protect sensitive information. 

Fig. 10  Statistics relating to each dimension
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Upon clicking the learner ID, a subsequent page would display a comprehensive over-
view of the selected learner’s learning styles and features. This page would provide 
detailed insights into how the learner behaves, engages with the learning materials, 
and utilizes various resources.

Within this page, teachers can explore specific information such as the learner’s 
preferred learning styles. It highlights whether the learner benefits more from visual/
verbal, active/reflective, sequential/global, sensitive/intuitive poles. This understand-
ing allows teachers to adapt their instructional methods to better suit the learner’s 
preferences. Additionally, the subsequent page reveals the learner’s interactions with 
different types of content. It showcases how the learner engages with various learning 

Fig. 11  Statistics relating to each dimension
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materials, such as videos, articles, quizzes, etc. This information helps educators 
identify the most effective resources and formats for engaging the learner.

Usability and utility evaluation of MOOCLS

The aim of this section is to evaluate the utility and usability of the MOOCLS as a learn-
ing styles visualization tool. In this part, we present the setup used for evaluation and 
discuss the results of this evaluation.

Fig. 12  Insight about learner’s processing dimension
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Evaluation setup

To assess our proposed tool, a survey study was performed, involving participants 
from various backgrounds: individuals with no prior experience in designing online 
courses, those who had previously created e-learning courses, and individuals who 
had participated in the development of Massive Open Online Courses (MOOCs).

The evaluation process focused on two main criteria. The first criterion was usabil-
ity, which refers to the level of effectiveness, efficiency, and satisfaction experienced by 
users while using a product to accomplish specific goals (Tricot et al., 2003). Usability 

Fig. 13  Insight learners’ learning styles
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was evaluated based on five quality components: learnability, efficiency, memorability, 
errors, and satisfaction, following the framework established by Nielsen, (2003).

The second criterion was utility, which aimed to determine the tool’s capability 
to provide a concise overview of essential information (Tricot et  al., 2003). Utility 
focuses on the tool’s ability to present key information in a clear and useful manner.

To gather participants for the study, a call for participation was circulated through 
multiple mailing lists, including info-ic, bull-i3, ATIEF, and AUF. Additionally, emails 
were specifically sent to teachers and researchers affiliated with the IRF-SIC Labora-
tory. Furthermore, we shared the invitation in relevant Facebook groups such as Ana-
lytics/Machine Learning/Data Mining and Business Intelligence and Big Data Maroc.

Despite the relatively small number of participants, consisting of 21 individuals, 
this sample size was considered adequate to identify any significant usability issues, 
following the guidelines proposed by Virzi (1992). Each participant was provided with 
a link to access the MOOCLS platform and was requested to complete a question-
naire to assess the tool’s performance.

After the participants had interacted with MOOCLS, they were asked to fill out a 
questionnaire containing 16 items, using an online Google Form and consisted of 16 
items divided into different sections. The first section (Q1 to Q6) of the questionnaire 
collected personal data about the participants, such as their age, gender, educational 
background, and prior experience in pedagogical design for online courses. This sec-
tion aimed to gather information about the participants’ profiles and their levels of 
expertise in the subject matter.

The second section (Q7 to Q12) focused on assessing the utility of the MOOCLS 
tool. Participants were presented with specific questions aimed at evaluating the 
tool’s ability to provide a concise overview of key information. This section aimed to 
measure participants’ perceptions of the tool’s effectiveness in presenting relevant 
information in a clear and concise manner.

The third section (Q13) evaluated the usability of the tool using the System Usability 
Scale (SUS) questionnaire developed by Bangor et al. (2009). The SUS is a widely used 
and validated scale that measures the participants’ subjective perceptions of usability.

The last section (Q14 to Q16) consisted of open-ended questions where partici-
pants were given the opportunity to provide additional feedback. They were encour-
aged to share any recommendations for improvements and to report any bugs or 
issues they encountered while using the MOOCLS application. This section aimed to 
gather qualitative insights and suggestions from the participants to further enhance 
the tool’s functionality and address any identified problems.

Evaluation results

The usability of the MOOCLS tool was evaluated using the System Usability Scale 
(SUS) questionnaire. The SUS questionnaire consists of 10 items, each rated on a five-
point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree).
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To calculate the SUS score, a specific formula was followed. For odd-numbered 
items (1, 3, 5, 7, 9), the score contribution was determined by subtracting one from 
the scale value. For even-numbered items (2, 4, 6, 8, 10), the score contribution was 
obtained by subtracting the scale value from five. The score contributions from all the 
items were then added together.

To obtain the final SUS score, the sum of the score contributions was multiplied by 
2.5. This calculation transformed the overall score into a range from zero to 100, pro-
viding a standardized measure of usability for the MOOCLS tool.

To summarize, the SUS score is formulated as follows:

The calculation of the SUS score can be influenced by misunderstandings of the 
negative statements in the questionnaire. Sauro and Lewis (2011) reported that13% 
of SUS questionnaires are prone to contain errors. In order to mitigate this issue, 
we implemented a preprocessing step for the participants’ responses, following the 
guidelines presented by Mclellan et  al. (2012). According to McLellan’s grid, any 
response higher than three for negative statements was considered to be an error and 
was thus treated accordingly. This preprocessing step aimed to minimize the impact 
of misinterpretations and enhance the accuracy of the SUS score calculation.

Based on the obtained findings, it can be observed that the average SUS (System 
Usability Scale) score for the MOOCLS tool was 75.9, with a range of scores vary-
ing from 55 to 100. The standard deviation for the scores was calculated to be 14.2 
(Fig. 14).

Referring to the guidelines provided by (Bangor et  al., 2009) for interpreting SUS 
scores, it can be inferred that the MOOCLS tool falls into the category of being 
"acceptable" in terms of usability. Systems scoring below 50 are generally considered 
unacceptable, scores between 50 and 70 are marginally acceptable, and scores exceed-
ing 70 are acceptable. This means that it has achieved a level of usability that is con-
sidered satisfactory. Additionally, with a SUS score above 70, the tool can be regarded 
as performing well, indicating a positive user experience.

This means that it has achieved a level of usability that is considered satisfactory. 
Additionally, with a SUS score above 70, the tool can be regarded as performing well, 
indicating a positive user experience.

SUSscore =

(
5∑

i=1

(5− S2i)+ (S2i−1 − 1)

)

× 2.5

Fig. 14  SUS scores for MOOCLS
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An in-depth analysis of participant responses to questions Q7 to Q12 reveals highly 
positive feedback regarding the usefulness of the MOOCLS tool. All participants 
unanimously agreed that MOOCLS effectively aided in acquiring a profound under-
standing of learners’ learning styles. They also acknowledged its value in identifying 
suitable activities and learning resources that could be recommended to learners, 
thereby enhancing their learning outcomes.

Furthermore, a significant majority of participants, specifically 19 out of 21, 
expressed that MOOCLS would facilitate the decision-making process related to their 
pedagogical strategies. This indicates that the tool offers practical insights and guid-
ance to educators, enabling them to make informed choices regarding instructional 
approaches and techniques.

The participants found the information displayed in the charts to be necessary and 
relevant. This agreement can be attributed to the careful selection and organization of 
graphics, which were specifically tailored to the proposed case study. The choice and 
arrangement of visuals effectively conveyed pertinent information, enabling participants 
to comprehend and interpret the data more easily.

The overall positive feedback on MOOCLS’ usefulness, its contribution to decision-
making, and the relevance of the displayed information demonstrates the effectiveness of 
the tool in supporting educators’ understanding of learners’ needs and assisting them in 
making informed pedagogical choices. The alignment between participants’ perceptions 
and the design of the tool affirms its value in the context of the proposed case study.

It is worth noting that the SUS score provides a quantitative measure of usability, but 
it is essential to complement it with qualitative feedback and further user evaluations to 
gain a comprehensive understanding of the tool’s strengths and areas for improvement.

The results of our study indicated that the feedback received regarding the usability 
and utility of MOOCLS was predominantly positive and constructive. However, it is 
important to note that the tool is still in the experimental phase, and there were sugges-
tions for improvement provided by the participants.

One valuable suggestion put forward by participants was the inclusion of lists of 
resources that would have the least impact on each learning style. This suggestion aims 
to provide educators with guidance on selecting resources that may be less influential for 
specific learning styles. Additionally, participants also recommended providing informa-
tion on resources that have a higher priority for improvement, catering to the learning 
styles with the greatest need.

By incorporating these suggestions, MOOCLS can enhance its functionality and pro-
vide more targeted recommendations to educators. These improvements would allow 
for a more tailored and effective approach when it comes to resource selection and 
improvement strategies, aligning better with the diverse learning styles of individual 
students.

Discussion
Unlike traditional classrooms where learners often come from similar backgrounds, 
MOOCs attract learners from various geographical, cultural, educational, and socio-
economic backgrounds. Given this heterogeneity, tailoring teaching methodologies to 
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each learner’s unique characteristics becomes challenging. This make the one-size-fits-
all approach less effective for MOOCs, and underscores the importance of designing tai-
lored instructional strategies for such massive courses.

To meet this challenge, with a particular focus on enhancing MOOC teaching, and we 
have leveraged the theory of learning styles and the widely used FSLSM model. In this 
paper we analyzed digital traces from participants’ interactions on the EDX platform, 
specifically focusing on the "Statistical Learning Stat" course offered by Stanford Uni-
versity during two sessions. Our study is distinctive in the research field, as few works 
analyzed MOOC databases, especially with such a large number of learners (Essa et al., 
2023; Raleiras et al., 2022).

To achieve this goal, we proceeded with data pre-processing and feature selection, 
followed by grouping learners into clusters based on their preferences for each learn-
ing style using unsupervised machine learning techniques. Subsequently, to create 
labeled datasets representing each dimension of learning styles, a unique approach 
termed the "balance of learning styles" was employed. This method involved merg-
ing the two poles (learning styles) within each dimension to quantify the degree of 
dominance exhibited by each style. By employing this approach, we aimed to establish 
a comprehensive understanding of learners’ preferences and their relative strengths 
within different learning style dimensions. Our study reveals that a predominant 
number of learners exhibited active, visual, sequential, and sensory learning styles. 
These findings align with the works of Felder and Silverman (1988).

We conducted a comparative analysis of four supervised machine learning algo-
rithms: decision tree, random forest, k-nearest neighbor, and a neural network. The 
objective was to assess their performance in predicting learning styles based on the 
collected data. The results of the analysis revealed that the decision tree model exhib-
ited exceptional accuracy, surpassing a threshold of 98% across all four datasets. This 
finding highlights the effectiveness of the decision tree algorithm in accurately pre-
dicting learners’ learning styles based on the provided features. The high accuracy 
achieved by the decision tree model underscores its potential as a valuable tool for 
educators seeking to understand and cater to the diverse learning preferences of their 
students. Many studies in the literature support our finding, reinforcing the credibil-
ity of decision trees as a robust method for predicting diverse learning styles (Essa 
et al., 2023; Raleiras et al., 2022).

In our context,in order to implement the obtained model, we have developed 
MOOCLS, a dedicated visualization tool designed for MOOCs. MOOCLS serves as 
a powerful resource for teachers, enabling them to gain a comprehensive understand-
ing of the diverse range of participants in a MOOC in terms of their learning styles. 
By utilizing this tool, educators can access valuable insights into their learners’ pref-
erences, thus facilitating the design and delivery of more customized course content 
that aligns with their specific learning styles.

There are a number of interesting directions to further extend our model in the future. 
Learners can benefit from model-driven recommendations ensuring they engage with 
materials and methods best suited to their individual styles. The model can also facilitate 
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the personalization of learning contents and resources, allowing for more targeted 
and effective instruction. Furthermore, our model cas offers a promising direction for 
enhancing the MOOC experience through personalized learning paths.

Finally, we highlight that the data analyzed in this research was specifically obtained 
from the edX course "Statistical Learning," which focuses on Supervised Machine Learn-
ing and targets learners with a scientific background. While the findings and insights 
derived from this dataset are valuable, it’s important to acknowledge that the underlying 
methodology was designed with genericity in mind, it can thus be easily applied to ana-
lyze the log of many other courses to enable deep understanding of student behaviors. 
To realize these benefits, the Fig. 15 illustrates a generic solution based on the proposed 
model. This solution can seamlessly integrate with diverse MOOC datasets, facilitating 
educational research and assisting instructors in improving course design.

To ensure the broader applicability of MOOCLS, it would be beneficial to apply the 
solution to datasets from MOOCs covering various themes, such as art & culture, 
literature, medicine, and more. By examining diverse datasets, we can gain a better 
understanding of how the tool performs across different subject areas and learner 
populations.

Conclusion
In this work, we have proposed a generic approach for predicting learners’ learning 
styles based on their interactions with the MOOC platform. It relies in on tree major 
steps. This approach encompasses three major steps. In the first step, we aimed to 
extract and select features aligned with the Felder–Silverman Learning Style Model 
(FSLSM), as it one of the most widely adopted models in technology-enhanced learn-
ing (TEL). Using these features, an unsupervised clustering technique was applied to 
cluster learners according to their preferences for each learning style. In the second 
step, We evaluate four machine learning algorithms: decision tree, random forest, 
K-nearest neighbors, and a neural network. Our findings indicate that the decision 
tree algorithm achieves a high accuracy of over 98%. In final step, to operationalize 
these results, we developed MOOCLS, a visualization tool for MOOCs, which allows 
teachers to better understand the variety and diversity of the participants in a MOOC 
in terms of their learning styles. Using this tool, teachers and instructors can gain 
significant insight into their learners’ preferences, allowing them to design more cus-
tomized course content that matches their learners’ learning styles.

Fig. 15  Connecting data stream with machine learning model
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