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Abstract

This study aims to explore and reveal profiling patterns in the measurement of
cognitive and noncognitivecharacteristics of undergraduate students’ programming
performances. Spatial skills, workingmemory, perceived programming self-efficacy,
mathematics scores, and academic grade point averagescores were taken indicative
variables to be explored. Participants of the study are 100 undergraduatestudents
registered to the Programming-I course at two different universities. The data were
analyzedthrough multi-dimensional profile analysis. The result of the
multidimensional scaling analysis indicated twodifferent profiles for the two groups:
high and low programming performance groups. For both groups,relationship
between the most similar variables was found to be verbal memory, mathematics
achievementand perceived programming self-efficacy. The results indicated that
there was a relatively similarrelationship between visual-spatial memory and spatial
orientation skills in the low-performance group,while mental rotation skill was
significantly different than the other variables. It was noted that two profiles forhigh-
and low-performance groups were quite different in terms of mental rotation skill. It
was also found that spatial orientation, visual-spatial memory and mental rotation
performances were all different from eachother, and from the other three variables
in the group with high programming performance. The mostdefinitive variables for
low- and high-performance groups were self-efficacy, verbal memory
andmathematics achievement. This study revealed that only verbal memory was the
determinant variable inboth groups for working memory.

Introduction
It is believed that programming skills naturally carry a number of other critical skills for

learning and education (Howard, 2002), and that successful programmers are perceived

by society as bright and successful individuals, generally in every area (Byrne & Lyons,

2001). Byrne and Lyons (2001) underlined a common understanding that today’s society

needs qualified and educated university graduates for the industry, and often, these

qualified and educated people are comprised of individuals successful in programming.

In parallel, Aşkar and Davenport (2009) pointed out that programming has particularly

gained importance in computer-related areas, and that is why it has become a compul-

sory course.
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Programming is considered as one of the most important complicated cognitive skills

(Bergersen & Gustafsson, 2011). Programming performance is comprised of two different

processes: programming knowledge, being language structure, definitions and certain

algorithms, and programming skill, being strategies required to use this knowledge

(Caspersen, 2007). Programming knowledge is required for programming, yet not enough.

Students need to know, besides programming knowledge, a strategy for how to use this

knowledge in the programming process (Caspersen, 2007). Individuals are expected to pos-

sess such basic skills as methodological thinking and signification, ability to use technology,

process comprehension and logical thinking (Holvikivi, 2010; White & Sivitanides, 2002).

Programming covers complicated new information, strategic knowledge about this

information as well as skills for applying this strategic knowledge (Robins et al. 2003). On

the other hand, many students have difficulty in learning programming, and thus fail to

do so (as cited in Ambrosio et al. 2011; Aşkar & Davenport, 2009; Caspersen, 2007;

Dehnadi, 2009; Jenkins, 2002; Mancy & Reid, 2004). Lau and Yuen (2011) indicated one

of the areas of study for programming as the determination of factors influencing pro-

gramming achievement.

There are many different reasons for students to find programming course difficult

and fail in the course. Learning styles, motivation and similar structures may affect pro-

gramming performance of the learners (Jenkins, 2002). Some reasons for failure might

be attributed to learners themselves, some to teaching methods. Some are, on the other

hand, caused by attitudes, expectations or prior experiences of learners or teachers

(Jenkins, 2002). A literature review by Yousoof et al. (2007) reports four fundamental

reasons for failure in the programming process.

These are:

1) Complicated writing style and concepts in programming languages

2) Cognitive overload in the learning process

3) Teaching method mistakes

4) Conceptual errors

There are several studies in the literature about programming performance (Erdoğan et

al. 2008; Jenkins, 2002; Milic, 2009). These studies deal with many variables affecting the

programming performance including mathematics and science achievement, prerequisite

knowledge, success/failure attribution, perceived programming self-efficacy, encourage-

ment, comfort level, working style preference, prior experience of programming, prior ex-

perience of computers except for programming, intelligence, computer attitude, cognitive

style, learning style, mother tongue, cognitive development, socio-economic status, cre-

ativity, problem-solving skill, and gender.

To conclude, existing research had investigated various variables to understand their

effects on programming performances separately. Yet, what variables make individuals

differ from each other is salient so far. Therefore, this study aims to deal with factors

related to programming in order to reveal profile patterns of high- and low-performance

groups on the basis of these individual differences. Consequently, by analyzing individual

differences, learning environments can adapt to individual learners more meaningfully.

Brief definitions of these variables and their relationship with programming perform-

ance are provided below.
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Working memory and programming performance

Working memory may be summarized as a structure divided between storing and infor-

mation processing demands, consisting of a working space with a limited capacity (Badde-

ley, 2000). As in all learning processes, programming education needs the use of memory

because programming process requires multi-operation of several cognitive activities. It is

stated that working memory is a determinant for programming performance due to its

high correlation with such skills as reasoning and general intelligence (Shute, 1991).

Shneiderman and Mayer (1979) conducted research on the impact of working memory

on programming processes. When a programmer is given initial programming information,

the programmer focuses on the statements given in the task, and the information is taken

into the short term memory. Then the programmer reaches to the prior information in the

long-term memory to complete this task in a successful manner. Finally, the information

given about the task and taken to the short term memory, along with the existing relevant

information in the long-term memory, are transferred to the working memory. Solutions

are produced based on the problem situation given in the working memory.

Vainio and Sajaniemi (2007) stated that programmers can keep only a limited part of the

program in the memory due to the limitation of the working memory capacity. Mancy and

Reid (2004) produced findings of a possible relationship between working memory capacity

and programming achievement. Pena et al. (1992) reached more concrete results, and re-

vealed that capacity of working memory is an important predictor of programming

achievement in the first stages of learning how to code. To support this finding, Shute’s

study in 1991 concluded that one needs to have a high working memory capacity in order

to be a good programmer. Bergersen and Gustafsson (2011) found that working memory

capacity improves programming knowledge, which improves programming skills; thus,

working memory indirectly affects programming skill. A review of the above findings will

show that working memory capacity has a significant, positive impact on programming

performance.

Spatial skills and programming performance

White and Sivitanides (2002) stated that a learner’s cognitive skills should be at a level re-

quired to learn a programming language. If cognitive characteristics of a learner are below

the level required to learn a programming language, the learner may be disappointed, and

above that level the learner may get bored. Similarly, Holvikivi (2010) indicated that

cognitive capacity is one of the factors affecting programming achievement. However,

Jones and Burnett (2008) claimed that few studies examined the relationship between

programming skill and spatial skills. Jones and Burnett (2008) stated that spatial skill is

one of those individual differences thought to be related to programming skill. Spatial skills

are claimed to be a dimension of intelligence, and it is possible to find several skills inter-

mingled in spatial skills. Halpern (2000) defines spatial skill as a cognitive characteristic to

measure the skill for conceptualizing spatial relationship between objects. Mental rotation

is a component of spatial skill, which is one of the most examined structures of spatial

skills. Mental rotation may be defined as correct visualization of rotating two- and three-

dimensional objects in the mind. Another component of spatial skills that may be related

to programming achievement are mental models. Mental models may be defined as a clear

visualization and abstraction of a program in the mind (Jones & Burnett, 2008). Fisher et
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al. (2006) stated that mental model is an abstract representation of the program, consisting

of various information emerged as a result of the source code during navigation.

Spatial skills are important for virtual environments, as well as for real environments.

Therefore, it is claimed that spatial skills may be related to the understanding of rele-

vant code pieces during the programming process (Cox et al. 2005). Jones and Burnett

(2007) determined that individuals with higher spatial skills navigate differently than

those with lower spatial skills, and stated that individuals with higher spatial skills

establish better mental models due to better understanding of the space.

A review of the literature shows that there are significant and meaningful relationships

between programming performance/education and spatial skills as well as visual-spatial

skills and mental models, which are the sub-dimensions of the spatial skills (DeRaadt et

al., 2005; Fincher et al., 2005; Jones & Burnett, 2008; Lau & Yuen, 2011; Mayer et al. 1986;

Ramalingam et al. 2004). Fincher et al. (2005) found a significant yet low level of

relationship between spatial skill and ‘Introduction to Programming’ course achievement.

Other studies resulted in significant and positive impact of spatial skills (Jones & Burnett,

2008; Mayer et al. 1986) and visual-spatial skills (DeRaadt et al., 2005) on programming

achievement. There are also findings showing that well-developed and well-structured

mental models have a positive impact on programming performance (Lau & Yuen, 2011;

Ramalingam et al. 2004).

Academic achievement, mathematics achievement and programming performance

Lau and Yuen (2009) stated that students’ previous academic achievements have a positive

and significant impact on their programming performance. Nonetheless, Byrne and Lyons

(2001) pointed out that it is not possible to say individuals with higher academic achieve-

ment will be successful in programming, since there are many students who are successful

in several courses may fail to achieve in the programming course. Programming is a

complicated tasks, so being a successful programmer requires having extensive experience

and skills. Such skills may include problem solving and mathematical skills (Jenkins,

2002). Similarly, Ambrosio et al. (2011) have also indicated that mathematical skills are

among those skills required for programming. There are many findings in the literature

considering mathematical background as a predictor of programming achievement

(Bergin & Reilly, 2005, 2006; Wilson, 2002; Wilson & Shrock, 2001). Byrne and Lyons

(2001) stated that there is a strong relationship between mathematics achievement and

programming performance, yet pointed out to the necessity of further empirical studies to

prove this relationship between these two structures.

Ambrosio et al. (2011) stated that students who easily learn programming may have

mental models acquired through other courses such as mathematics and science. This

supports the positive relationship between programming achievement and achievement

in mathematics and other courses.

Programming self-efficacy and programming performance

Bandura (1977) defines self-efficacy as a learner’s own opinion about one’s organization

of required actions to reach a specific target, and successfully fulfilling it. Pajares (1996)

states that perceived self-efficacy plays an important intermediary role between an
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individual’s knowledge and actions because an individual’s belief in own skills has an

important effect on one’s behavior.

Of students at the same cognitive level, those with higher self-efficacy have higher

perseverance whereas those with lower self-efficacy overrating the situation making it

more complicated than it actually is (Aşkar & Davenport, 2009; Davidsson et al. 2010).

Therefore, since self-efficacy is associated with an individual’s performance and belief

in one’s self, it is possible to improve one’s self-efficacy to improve his performance

(Ramalingam et al. 2004).

The studies exploring the relationship between programming self-efficacy and

programming performances yield different and contradicting findings. Cegielski and

Hall (2006) stated that perceived programming self-efficacy is a meaningful pre-

dictor of programming performance; on the contrary, Wilson (2002) found that

programming self-efficacy has no significant impact on programming achievement.

Jegede (2009) pointed out prior programming experience’s effect on programming

performance through perceived self-efficacy. This means perceived programming self-

efficacy may act as an intermediary. Based on a review of literature, it is possible to assert

that, in order to have a better understanding of the impact of perceived self-efficacy on

programming skills, more studies are needed to examine the relationship between these

two variables.

To conclude, the purpose of this study is to explore (1) how cognitive and non-

cognitive factors play a role in understanding undergraduate students’ program-

ming performance, and (2) to reveal profiling patterns in the measurement of

cognitive and non-cognitive characteristics of undergraduate students according to

their high and low programming performances.

Method
Profile analysis with multidimensional scaling is appropriate for analysis of sample of

any sizes and includes each profile level and pattern information. Therefore, it is stated

to be more advantageous than other profile analysis methods like cluster analysis and

modal profile analysis (Kim et al., 2004). Therefore, in this study, ALSCAL procedure

of multidimensional scaling method was used to describe profile differences of low and

high programming performance groups across their cognitive and non-cognitive

characteristics.

Participants

The participants included 100 sophomores who were enrolled in “Programming

Language-I” course at the Computer Education and Instructional Technologies Depart-

ment in two different universities. There were 54 (54 %) female and 46 (46 %) male

participants in the study.

Measurements

Cognitive profile data were collected with computerized spatial orientation test, mental

rotation test, visual-spatial working memory test and verbal working memory test.

Programming self-efficacy scale was distributed in a single session at each department
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separately in a paper-and-pencil form. Participants’ programming performance scores,

their GPA scores and their math scores were gathered from their course instructors.

Spatial orientation ability was measured with Spatial Orientation Test which was

developed originally by Kozhevnikov and Hegarty (2001) and was standardized for

computerized version through E-Prime 2.0 software by Mazman and Altun (2013) for

Turkish undergraduates. This test consisted of 14 questions and both the reaction time

and accuracy scores were logged for each question. In this test, participants see an array

of objects on the screen. In this array, there have been eight objects (chair, car, cat,

armchair, traffic light, dog, stop sign and bus) which were arranged like around a circle.

A character head has placed at the center of objects. The character’s eyes were looking

towards the cat which is located at the right side of the array in each question. Partici-

pants were asked to imagine themselves standing at the characters’ head and then move

at the clockwise to one of the objects stated in the instruction and when the facing

object is straight ahead, to indicate the direction of a third object of location on the

answer section. In each trial, participants were to imagine themselves standing at the

character’s head, then face at clockwise to one of the figure specified by instruction and

when the facing figure is straight ahead, indicate the direction to a third figure of loca-

tion on the answer section.

Answer key consists of eight empty checkboxes which were placed at the point of

eight basic directions (00, 450, 900, 1350, 1800, 2250, 2700, 3150) and aligned like form-

ing a circle. The character’s head was drawn at the center of checkboxes and the object

which is imagined to being faced was drawn vertically up, being pointed by an arrow

from center. (For more information about the test, see Mazman and Altun, 2013).

A revised version of visual spatial memory-word rotation test was used which was

originally developed by Blasko et al. (2004) within the scope of “Visualization Assess-

ment and Training Project (VIZ)” to asses, examine and improve spatial performance.

Spatial memory-word rotation test was modified and revised by researchers through E-

Prime 2.0 software and norm study was conducted for Turkish undergraduates. The test

is consisted of three sets and difficulty level increases in each set. There have been two

main subtasks in test; the first is mental rotation of numbers and the second is retention

of peak direction of numbers in each trial. In each set, using one of the “2,7,1,4” numbers

which have obvious peak, mirror or same image of one of the numbers is given on the

screen for each question. Numbers appears as their peak direction shows one the eight

different orientations (450, 900, 1350, 1800, 2250, 2700, 3150, 3600). The first participants

were required to decide if the image of the number is a mirror view or normal view and

then press the “M” from the keyboard if the view is mirror, or press the “N” if the view is

normal. This section is where the participants performed mental rotation tasks.

While they were requested to decide whether the number image is in mirror or nor-

mal view, participants were also asked to remember the direction of each number peak.

After finishing mirror/normal decision part in related set, they must select the check-

boxes that show direction of numbers’ peak without considering order. The numbers

of directions which participants must remember increase one in every set. Each of the

reaction time (ms) and accuracy score were logged in both part of the (mental rotation-

visual spatial memory) question.

An n-back task software developed by Brain Workshop was used to measure verbal

working memory. This software is developed by Hoskinson (2012) with Python
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programming language and adapted into Turkish by Çevik and Altun (2012) compiling

interface files. The test starts with Dual 2-Back mode by default. Dual part of the name

implies the software presentation modality (sound, position, color, shape … etc.) and n-

back implies the how many trial back participant is being asked to remember. Screen de-

sign consisted of a 3X3 matrix independently of modality. Since the software was used to

measure only verbal working memory for this study, only auditory modality was consid-

ered and measurement was made in 2-back mode.

For the practice session at first auditory modality (10+4 trial), after that position

modality (10+4 trial) and lastly synchronous auditory-position modality (15+4 trial)

was executed. For the test session totally 30+4 trial auditory modality was set.

In auditory modality participants took a headset. A series of letters were presented

auditory at the rate of 2.5 s per stimuli. Participants press “L” if the letter they hear is

the same it was 2 trial back. For example, if the presented letters were arranged as “T

K N M N H M”, participants were expected to press “L” just they heard the second N.

Because there is M between two N and the letter N is same with two back stimuli. Test

scores and information details about the test session were logged into a txt file. The test

scores were produced as a numerical score out of 100.

Participants’ programming self-efficacy as a non-cognitive variable was measured

with a self-report tool, “Programming Self Efficacy Scale” which was adapted into

Turkish by Mazman and Altun (2013). The scale was 7-likert type with 9 items under

two factors (“ability to perform simple programming tasks” and “ability to perform

complex programming tasks”). The scale ranged from 1= not at all confident, 2=

Mostly not confident, 3= slightly confident, 4= %50/50, 5= Fairly confident, 6= mostly

confident, 7= absolutely confident. Maximum score was 63 and the minimum was 1.

The Cronbach alpha coefficient was reported to be .928. The construct validity study of

the scale yielded two factors, which have explained 80,814 % of the variance together.

For the programming performance, end of the year degree scores of Programming-1

course was gathered. For the math scores arithmetic mean of end of the year degree

scores of Math I and Math II courses were considered. All the degree scores were

recorded in the scale of 100. Programming-1 course was designed to introduce basic

programming concepts and coding to undergraduate students. The structure of the

course was as follows: First, students were instructed on reading the predefined codes

to understand what outcomes will be produced when computation was executed.

Secondly, they were taught variables, functions, methods, and events to be able to write

codes for predefined problem sets. Finally, they were trained for error debugging

regarding the codes they had practiced.

Data scoring – defining groups

The dependent variable of the study is the overall programming performance. The

independent variables included spatial orientation ability, visual-spatial working mem-

ory, mental rotation ability, verbal working memory, academic grade and mathematic

grades. Since visual spatial working memory, spatial orientation and mental rotation

tests yielded two different measures, accuracy and reaction times, inverse efficiency

scores which was proposed by Townsend and Ashby (1978) was applied. This score

was calculated according to the following formula;
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IES ¼ RT
PC

RT= Mean reaction time of the correct responses

PC= Proportion of the correct responses

IES= Inverse Efficiency Score

IES was calculated for each participant in their spatial orientation, mental rotation

and visual spatial memory test scores. Finally, all the programming performance scores

were converted to Z scores to determine the high and low profiles. Participants that

have positive z scores, which means above average, were assigned to high group and

participant with negative z scores were assigned to low group. So, 45 of the participants

were grouped in low programming profile (X=58,4, sd=9,12) and 55 of the participants

were placed in high profile group (X=81,68; sd=6,8).

Data analysis

Data analysis was a two-step process. First, descriptive statistics of all the test scores

were calculated. Then, participants were grouped according to their programming

performances. Z scores of programming performance were calculated and participants

were grouped as high and low programming profiles. Participants having positive z

score were placed in high group while participants having negative z score were coded

as low profile group. As a result, 45 of the participants were categorized under low

group (X=58.4; sd=9.12) and 55 of the participants were categorized under high group

(X= 81.68; sd=6.8).

Secondly, ALSCAL algorithm of the multidimensional scaling technique was run to

explore the patterns of cognitive abilities in programming performance groups. Multi-

dimensional scaling is defined as “…displaying the objects in a k-dimensional space

through distances between an object determined by p variables. It is a graphical based

method to show structure of relationship between objects” (Bağ and Alpar, 2011). For

this purpose, distances between objects are reported as a coordinate which is repre-

sented in space. Those obtained coordinate data were visualized through MS Excel

program.

While evaluating the goodness of multidimensional scaling models, stress value and the

RSQ are two fit indexes that are used (Bağ and Alpar, 2011). Stress value is given by the

differences in data and predicted value, and RSQ criteria is a fit index that shows the

squared correlation between Euclidean distances and the disparities (Young, 2013).

Table 1 Descriptive statistics of participants’ test scores

N �X Sd Min. Max.

Programming Performance 100 71,2 14,07 34 96

IES_Spatial Orientation 100 1417,09 ms 1259,47 652,22 12153,46

IES_Mental Rotation 100 4450,68 ms 1736,93 1776,26 11531,28

IES_ visual Spatial Memory 100 1380,0313 ms 923,51 435,81 6729,73

Verbal Memory 100 59,33 19,22 13 100

Mathematic Performance 100 61,0545 22,36 4,5 97,50

Programming Self Efficacy 100 42 12,3 9 63
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Higher values of stress indicate poorer fit (0–0.025: excellent, 0.025-0.05: good, 0.05-0.1:

fair, 0.1-0.2: poor).

Findings
As seen in Table 1, the mean score for the programming performance of a total of 100

participants were found to be 71.2 (sd=14.07) out of 100. Mean of mathematic perform-

ance was found to be 2.57 (sd=0.42) out of 4, while programming self-efficacy score was

Fig. 1 Variable representation in Euclidian distance model for low profile group

Fig. 2 Distances and similarities among profiles of low performance group members on a
two-dimensional space

Altun and Mazman Smart Learning Environments  (2015) 2:13 Page 9 of 16



found to be 42 (sd=12.3) out of 63. Descriptive statistics about the participants were

presented in Table 1.

Patterns in high and low performance groups

Based on the analyses, two dimensional model was chosen for the model fit and s-stress

was set to be .001. ALSCAL multidimensional scaling analysis yielded the model consist-

ing of mental rotation, spatial orientation, visual-spatial working memory, verbal memory,

self-efficacy, and math performance variables to be the best fitted with two-dimensional

solution. Findings will be presented for low and high group separately belxow.

Profiles in low performance group

The analysis of goodness of fit indexes for low level group was found to be S-Stress=0.05

and RSQ=0.994. Those obtained goodness of fit index values showed that the model was

in a good fit. The findings indicated that distances and differences among variables exhibit

a linear relationship, which is presented in Fig. 1.

In order to explore how the variables are represented on a two-dimensional space, the

distances and similarities among profile patterns of low performance group members are

visualized in Fig. 2.

Based on the analysis results, it is seen that self-efficacy, verbal memory and mathemat-

ics scores get grouped together, while distance between visual -spatial memory and spatial

orientation ability shows relative closeness, whereas mental rotation scores seemed to be-

have independently. This finding may be interpreted as low performance group members’

perceived self-efficacy, mathematics achievement and verbal memories have a matching

tendency. Their visual-spatial memory and spatial orientation skills are also relatively alike

while their mental rotation skills differ significantly.

Fig. 3 Profile patterns of low performance group on dimension 1 vs dimension 2
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Plot graphics of the coordinates obtained on the basis of participant profiles were

drawn using MS Excel. Figure 3 displays the graphics for two profiles exhibited by the

participants in the low performance group.

As seen in Fig. 3, although mental rotation skill is low both at the first and second di-

mension, it represents different patterns; besides, spatial orientation and visual -spatial

memory are at a relatively similar level on both of the low level profile. Along these lines,

a similar pattern was observed between verbal memory, perceived self-efficacy and math-

ematics achievement.

Profiles in high performance group

As a result of the multi-dimensional scaling analysis for the high programming perform-

ance group, iteration was continued until the number of dimensions was two, and the

stress value was smaller than 0.001; and the iteration was stopped at the fourth iteration

where the stress value reached to 0.00008. The analysis resulted in that the two-

dimension models’ goodness of fit indexes were found to be as S-Stress=0.060 and

RSQ=0.990 for the high performance group.

Obtained fit index values indicated a good fit by the model. Figure 4 shows that

distances and differences among variables indicate a linear relationship.

Figure 5 gives a demonstration of distances among patterns of high performance

group members on a two-dimensional space.

Based on the analysis results, it is observed that self-efficacy, verbal memory and mathem-

atics scores go together, while visual -spatial memory, orientation and mental rotation

scores were independent. This finding may be interpreted as high performance group

members’ perceived self-efficacy, mathematics achievement and verbal memories have a

Fig. 4 Variable representation in Euclidian distance model for high profile group
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matching tendency, while their spatial orientation skills, visual -spatial memory and mental

rotation skills significantly differ, which indicates that this group, with their higher program-

ming performance, does not exhibit a corresponding distribution in itself in the latter skills.

Plot graphics of the coordinates obtained on the basis of participant profiles were

presented in Fig. 6 for two profiles exhibited by the participants in the higher perform-

ance group.

There were two different patterns observed in exploring the profiles of high perform-

ance group. In the first dimension, there were a group of participants with a higher level

of mental rotation, whereas spatial orientation and visual -spatial memory are at a rela-

tively lower level. Verbal memory, perceived self-efficacy and mathematics achievement

were observed at similar across high performance students, yet in a negative manner.

At the second dimension profile, spatial orientation skills exist at a higher score inter-

val compared to the other group, while mental rotation is at a lower interval. The

groups also act differently in terms of visual-spatial memory scores. On the other hand,

verbal working memory, perceived self-efficacy and mathematics achievement are

positive at a corresponding level. As a result, similar characteristics have been observed

for verbal working memory, perceived self-efficacy and mathematics achievement both

for first and for second dimension profiles. Yet, the two profiles differ in terms of

mental rotation skill, spatial orientation skill and visual-spatial memory scores.

Consequently, in the light of the findings, it may not be sufficient to consider mental

rotation skill for the low performance group on its own in order to model this group’s

performance. Similarly, since mental rotation, spatial orientation skill and visual -spatial

memory act independently for the high performance group, use of these variables in

the modelling process may provide different results. Instead, it would be better to

consider verbal working memory, perceived self-efficacy and mathematics achievement

as observed correspondingly for both groups to be noticeable.

Fig. 5 Distances and similarities among profiles of high performance group members on a
two-dimensional space
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Conclusion and Discussion
This study aimed at exploring how various cognitive and non-cognitive variables had

an impact on undergraduate students’ programming performances. The data were ana-

lyzed to examine the patterns via multi-dimensional scaling analysis for two groups

with higher and lower programming performance. Participants’ programming perform-

ance were computed on the basis of calculated z scores, using end-of-term pass grades

from the Programming Languages-I course, and those with negative z scores were

classified as being in the low performance group, whilst those with positive z scores as

being in the high performance group.

Results of the multi-dimensional scaling analysis of the variables associated with

programming performance indicated two different profiles for two groups having both

high and low programming performance scores. For both groups, a relationship

between the most similar variables was found for verbal memory, mathematics achieve-

ment and perceived programming self-efficacy. In the low programming performance

group, the relationship between visual-spatial memory and spatial orientation skills

were relatively similar, while mental rotation skill was significantly different from all

other variables. It is remarkable that two profiles emerged both for the high- and low-

performance groups that are quite different in terms of mental rotation skill. In the

high performance group, inversely, spatial orientation, visual-spatial memory and

mental rotation performances are significantly different both from each other and from

the other three variables.

The most determinant variables for the high- and low-performance groups are self-

efficacy, verbal memory and mathematics achievement. The literature emphasizes the

importance of working memory in providing both declarative information and practical

skills in teaching programming (Shute, 1991); however, this study has concluded that

only verbal memory was the determinant variable in both groups in terms of working

memory. Interviews held with instructors of the Programming-I course and a review of

Fig. 6 Profile Patterns of High Performance Group on Dimension 1 vs Dimension 2
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the exam questions in these courses show that the courses typically focus on the

conceptual dimension of the programming process, and classes are realized through

lecture-based mode mainly on syntax and procedures, followed by paper-and-pencil

test. Therefore, it can be speculated that these test scores might have significant impact

on bringing the verbal memory scores to the foreground.

On the other hand, the literature emphasizes the importance of spatial skills at different

stages of the programming process, such as understanding the program and debugging, as

well as navigating among code blocks in visualization of the program in the mind prior to

operation (Vainio & Sajaniemi, 2007; Cox et al. 2005). However, this study concludes that

other variables are quite independent for both groups, and are not determinant in profiles

for high- and low- performance groups. This finding may be interpreted by the non-

existence of spatial skills as a determinant variable since the subject course (Programming-

I) is an introductory course and does not cover advanced programming performance

processes, such as navigation between debugging and coding, and advanced algorithms.

This study examined programming performance according to the course scores, and

thus it is limited to the structure of the exams. Besides, even though one group’s program-

ming performance is considered ‘high’, it is important to note that this is limited to the 2nd

year 1st term final grades. It would be possible to obtain more comprehensive results with

a similar study examining professional programmers as well, in order to see in-group and

between-group differences. More research would shed a broader light upon our under-

standing of the programming performance as well as computational thinking. Secondly,

only perceived self-efficacy scores were obtained as a non-cognitive factor in this study.

More exploratory research is needed to explore other non-cognitive factors such as

emotional stances. By taking individual differences into account, instructional designers

could provide more meaningful design choices and smart learning environments for

learners could be developed.
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