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Abstract
An ontology is a knowledge representation structure which has been used in Virtual
Learning Environments (VLEs) to describe educational courses by capturing the concepts
and the relationships between them. Several ontology-based question generators used
ontologies to auto-generate questions, which aimed to assess students’ at different
levels in Bloom’s taxonomy. However, the evaluation of the questions was confined to
measuring the qualitative satisfaction of domain experts and students. None of the
question generators tested the questions on students and analysed the quality of the
auto-generated questions by examining the question’s difficulty, and the question’s
ability to discriminate between high ability and low ability students. The lack of
quantitative analysis resulted in having no evidence on the quality of questions, and
how the quality is affected by the ontology-based generation strategies, and the level
of question in Bloom’s taxonomy (determined by the question’s stem templates). This
paper presents an experiment carried out to address the drawbacks mentioned above
by achieving two objectives. First, it assesses the auto-generated questions’ difficulty,
discrimination, and reliability using two statistical methods: Classical Test Theory (CTT)
and Item Response Theory (IRT). Second, it studies the effect of the ontology-based
generation strategies and the level of the questions in Bloom’s taxonomy on the quality
of the questions. This will provide guidance for developers and researchers working in
the field of ontology-based question generators, and help building a prediction model
using machine learning techniques.
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Introduction
Ontology is a formal and explicit specification of a shared conceptualisation (Uschold and
Gruninger 1996; Studer et al. 1998; Borst 1997). It is a knowledge representation struc-
ture, which models a specific domain of interest by providing a formal machine readable
representation of entities in the domain. Entities include classes, individuals, and prop-
erties. Classes represent sets of individuals, individuals represent actual objects in the
domain, and properties represent relationships in the domain between individuals.
Ontologies have been used in Virtual Learning Environments (VLEs) to capture the

concepts in an educational course (Gruber 1993). Sakathi (Murugan et al. 2013) devel-
oped an ontology, which captures concepts in the computer networks domain such
as the network topology, the communication’s medium, and the Open Systems Inter-
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connection (OSI) model. Lee et al. (2005), Kouneli et al. (Kouneli et al. 2012), and
Ganapathi et al. (2017) developed ontologies, which capture the educational concepts in
the Java language introductory courses (Arnold et al. 1996). The ontologies aimed to teach
students the fundamental concepts of programming in Java.
On the other hand, some ontologies were not developed to capture particular domains.

Instead, they aimed to have the world’s largest and complete knowledge base that cov-
ers different domains. Among these ontologies is the OpenCyc ontology (OpenCyc).
OpenCyc covers several domains such as; mathematics, physics, medicine, computer
networks and many others, and it consists of hundreds of thousands of concepts and
properties.
Ontologies have been used by several ontology-based question generators to auto-

generate true and false, multiple choice, and short answer assessment questions. The
question generators used several ontology-based generation strategies which exploit
the ontology classes, individuals, and properties. The ontology-based generation strate-
gies could be categorised into the following three main strategies (Papasalouros
et al. 2017;2011, Cubric and Tosic 2017; Grubisic 2012; Grubisic et al. 2013;
Al-Yahya 2014):

1. The class-based strategy, which uses the relationship between the ontology classes
and individuals.

2. The terminology-based strategy, which uses the relationship between the class and
sub-class in ontologies.

3. The property-based strategy, which uses the object, datatype, and annotation
properties in the ontologies.

Papasalouros et al. (2017;2011) defined the class, terminology, and property-based
generation strategies which traverse the domain ontology and auto-generate the mul-
tiple choice question’s correct answer (key) and incorrect answers (distracters). The
three main strategies contain several sub-strategies which specify the classes, individ-
uals or properties from which the question’s key and distractors are generated. For
example, Table 1 illustrates a multiple choice question generated using Papasalouros’s
terminology-based strategy. The question was generated from Sakthi’s computer net-
work ontology. The question’s key is a subclass of the concept OSI model and the
question’s distractors are sibling classes of the OSI model class. Table 1 also shows
that the question had the "Choose the correct sentence" text, which is called the
question’s stem, and it is used in all the questions generated using Papasalouros’s
question generator.
Cubric and Tosic (2017) built a question generator which used the ontology-based

generation strategies defined by Papasalouros. However, they extended the property-
based strategies to include more sub-strategies, which used the annotation properties
in the ontology. Moreover, instead of using Papasalouros’s stem template, which is not

Table 1 Question generated using a terminology-based strategy

Stem: Choose the correct sentence

(1) Transport layer is part of the OSI model

Options: (2) Network operating system is part of the OSI model

(3) TCP/IP suite is part of the OSI model

Key: (1) Transport layer is part of the OSI model
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related to an educational theory, Cubric and Tosic defined a set of stem templates, which
aimed to assess student cognition at different levels in the Bloom’s taxonomy, which is
widely used in the educational research (BS 1956; Krathwohl 2002; Anderson and Sos-
niak 1994). Bloom’s taxonomy categorise the assessment questions into the following six
major levels, which are arranged in a hierarchical order according to the complexity of
the cognitive process involved (BS 1956; Krathwohl 2002; Assessment 2002): 1) Knowl-
edge: at this level the students need only to recall certain concepts in the domain. For
example students need to list, define, and describe specific concepts in the domain with-
out understanding how they are related to other concepts. 2) Comprehension: at this
level the students need to start thinking about the meaning of the concepts in terms
of their relationship with other concepts in the domain. 3) Application: at this level
the students need to demonstrate their ability to use the concepts they have learned
in real situations. For example the students need to provide and show examples that
prove their understanding of the domain concepts. 4) Analysis: at this level the students
need to understand the domain terminology structure. For example the students need
to have a good overview of the concepts in the domain by analysing how they are clas-
sified and related to each other. 5) Synthesis: at this level the students should be able to
relate concepts from different domains to create and develop new ideas. 6) Evaluation: at
this level the students need to make judgments, assess and compare ideas and evaluate
the data.
Each level in Bloom’s taxonomy is subsumed by the higher levels, for example a

student functioning at the application level had mastered the educational concepts in
the knowledge and comprehension levels (BS 1956). Bloom’s associated the levels hier-
archical order with the question’s difficulty (BS 1956), for example knowledge level
questions are easier than questions which assess other levels in Bloom’s taxonomy,
and synthesis and evaluation question are more difficult than the comprehension level
question (BS 1956).
Cubric and Tosic (2017) generated questions which assess students at the knowledge,

comprehension, application and analysis levels only. Grubisic (2012); Grubisic et al. (2013)
followed a similar approach to Cubric and Tosic by defining a set of question stem tem-
plates which assess students’ cognition at the knowledge, comprehension, application and
analysis levels. However, unlike the previous work, Grubisic generated different types
of questions (true and false, multiple choice, and short answer). Moreover, she ignored
the class-based strategies, and only used the terminology-based and property-based
strategies to traverse the ontology and generate assessment questions.
Grubisic (2012); Grubisic et al. (2013) used ontology-based generation strategies similar

to Papasalouros. However, fewer restrictions were applied for selecting the distractors in
the generated questions. For example, if a question is generated to assess students on the
educational concept EC, Papasalouros defined that the distractor should be one of class
EC siblings, while Grubisic allowed selecting any class randomly from the ontology as
long as it has no relationship with EC.
Al-Yahya (2014;2011) also built a question generator for auto-generating true and false,

multiple choice, and short answer questions using class-based and property-based strate-
gies. She defined question stem templates aimed only to assess students’ cognition at the
knowledge level in Bloom’s taxonomy (Al-Yahya 2014;2011). Al-Yahya followed Grubisic’s
steps in allowing distracters to be randomly selected from the domain ontology.
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The ontology-based question generators discussed above evaluated the auto-generated
questions. However, the evaluation of the questions was confined to measuring the quali-
tative satisfaction of domain experts and the students who agreed that the auto-generated
questions could be used as assessment questions in learning environments. None of the
ontology-based questions’ generators tested the questions on students to analyse the
quality of auto-generated questions by examining the question’s difficulty, and the ques-
tion’s ability to discriminate between high ability and low ability students. In addition, the
question generators auto-generated different types of questions using different ontology-
based generation strategies. However, none of the ontology-based question generators
studied the effect of the ontology-based generation strategies and the level of question in
Bloom’s taxonomy on the quality of questions generated. Therefore, this paper makes the
following contributions to knowledge:

1. Developing an ontology-based question generator which integrates the stem
templates and generation strategies introduced by Papasalouros et al. (2017;2011),
Cubric and Tosic (2017), Grubisic (2012); Grubisic et al. (2013), and
Al-Yahya (2014;2011). The generator could be used to generate questions from any
domain ontology. In addition, it helps in evaluating the quality of questions
quantitatively. This help researchers auto-generate questions with specific
characteristics (e.g., high discrimination);

2. Quantitatively analyse the quality of ontology-based auto-generated question’s for
the first time;

3. quantitatively analyse the quality of assessment tests formed from the
ontology-based auto-generated questions; and

4. study the effect of different ontology-based generation strategies and the level of
question in Bloom’s taxonomy on the quality of question’s generated.

This paper is structured as follows: Section Related work illustrates the analysis used by
existing question generators and presents the limitations in these analysis and the impor-
tance of our study. “Evaluation methods” explains the evaluation methods used in this
paper to evaluate the quality of auto-generated questions. Section Experimental study
presents the experimental study. Section Results and discussion illustrates the experiment
results. Finally, “Conclusion and future work” concludes the paper and suggests future
work.

Related work
Different qualitative and quantitative analyses were carried out to evaluate questions
auto-generated from domain ontologies (Alsubait et al. 2014; Al-Yahya 2014; Vinu and
Kumar 2017; Seyler et al. 2016; Susanti et al. 2017). Papasalouros et al. (2017;2011) auto-
generated multiple choice questions (MCQs) from the Eupalineio Tunnel ontology, which
is a domain ontology about the ancient Greek history. The questions were evaluated by
two domain experts who found that all the questions were satisfactory for assessment
regardless of some errors in the questions’ syntax (75% of theMCQs were assessed as syn-
tactically correct) (Papasalouros et al. 2017). Cubric and Tosic (2017) developed an online
environment where users could upload their domain ontologies, auto-generate MCQs,
and evaluate the questions created by them or other users in the environment. The users
evaluate the auto-generated questions by determining the question quality (the question
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is easy to understand and the grammar is correct), and the question usability (the ques-
tion could be used in an assessment test). Cubric and Tosic did not publish any evaluation
results.
Grubisic (2012); Grubisic et al. (2013) evaluated the questions auto-generated from the

‘computer as system’ domain ontology using two groups of students. The first group con-
sisted of 14 students who had good prior knowledge in the ‘computer as system’ domain.
However, the students had no experience working with VLEs. The second group consisted
of 16 students who had learned about the ‘computer as system’ domain three years before
the experimental study was carried out and had a good knowledge of different VLEs. 21%
of the students in the first group found the questions comprehensible while 29% had a
neutral opinion, and 50% found the questions incomprehensible (Grubisic et al. 2013).
On the other hand, 38% of the students in the second group found the questions com-
prehensible, 38% had a neutral opinion, and 24% found the questions incomprehensible
(Grubisic et al. 2013). Grubisic concluded that the students in the second group who were
more mature (students who took the ‘computer as system’ course three years before the
experiment was carried out) and who had more experience working with different VLEs
were more satisfied in terms of understanding the ontology-based generated questions.
Al-Yahya (2014); Al-Yahya (2011) auto-generated true and false, multiple choice, and

short answer questions from several domain ontologies such as the travel ontology, which
captures information about travel destinations and hotels (Protege ontology library -
protege wiki 2017). She evaluated the auto-generated questions by assessing if the ques-
tions are syntactically correct and whether the questions were suitable to be used in an
assessment test. Al-Yahya’s evaluation results revealed that 90% of the questions generated
were syntactically correct and could be used as assessment questions (Al-Yahya 2011).
Al-Yahya carried out further evaluation to assess if the auto-generated MCQs were syn-
tactically correct and could be used as assessment questions using three domain experts.
The experts had experience in formulating MCQs and were asked to assess the MCQs
generated from two domain ontologies (an ontology which captures the Arabic vocabu-
lary (Al-Yahya et al. 2010) and a history ontology in Arabic which captures the historical
concepts taught to students in the 8th grade (Al-Yahya 2014; 2011)). The experts agreed
that 82% of the MCQs generated from the Arabic vocabulary were syntactically correct
and could be used as assessment questions, while 60% of the MCQs generated from the
history ontology were syntactically correct and could be used as assessment questions
(Al-Yahya 2014). Al-Yahya stated that the difference in the evaluation results was due to
the content of the domain ontologies, as the MCQs, which were classified as unaccept-
able in the history ontology, were dealing with common sense or general knowledge. This
was not the case in the Arabic vocabulary ontology (Al-Yahya 2014).
In summary, the ontology-based question generators mentioned above have the follow-

ing limitations: Firstly, the evaluation of the auto-generated questions was confined to
measuring the qualitative satisfaction of domain experts and the students who agreed that
the auto-generated questions could be used as assessment questions in learning environ-
ments. However, none of the ontology-based questions’ generators tested the questions
on students to analyse the quality of auto-generated questions by examining the question’s
difficulty, and the question’s ability to discriminate between high ability and low ability
students. Secondly, none of the ontology-based question generators studied the effect of
the ontology-based generation strategies and the level of question in Bloom’s taxonomy
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on the quality of questions generated. Therefore, Section Evaluation methods presents
the evaluation methods used in this paper to evaluate the questions quantitatively.

Evaluationmethods
This section presents two statistical methods, which have been used to evaluate the
quality of ontology-based generated questions.

Classical Test Theory

Classical Test Theory (CTT) is used to evaluate the quality of questions and assessment
tests in learning environments using the statistical measures described in the following
sections (Alagumalai and Curtis 2005; Ding and Beichner 2009; Doran 1980; Cohen et al.
2013; Erguven 2014).

Question difficulty index

The question’s difficulty index (P) measures the question easiness and it is defined as
the proportion of students choosing the correct answer (Ding and Beichner 2009; Doran
1980; Cohen et al. 2013; Schmidt and Embretson 2003):

P = N1
N

(1)

Where N1 is the number of correct answers andN is the total number of students taking
the test. P values range from 0 to 1. Table 2 shows that questions with high difficulty
indices are easy while questions with low difficulty indices are difficult.

Question discrimination index

The question’s discrimination index measures how well the question could discriminate
between high ability (students with high scores) and low ability students (students with
low scores) (Ding and Beichner 2009; Doran 1980; Cohen et al. 2013). The discrimination
index is defined as the difference between the proportion of the top quartile students who
answered the question correctly and the proportion of the bottom quartile students who
answered the question correctly (Ding and Beichner 2009; Doran 1980):

Discrimination index = NH − NL
N/4

(2)

Where NH and NL are the number of correct answers in the top quartile and bot-
tom quartile, and N is the total number of students taking the test. Table 2 shows that

Table 2 Range of values and descriptions of the question’s quality measurements

Question quality measurements Range of values Description Literature

Difficulty index

[0, 0.35) Very difficult (Doran 1980)

[0.35, 0.60) Moderately difficult (Doran 1980)

[0.60, 0.85) Moderately easy (Doran 1980)

[0.85, 1] Very easy (Doran 1980)

Discrimination index

[0, 0.3) Low (Doran 1980; Ebel 1979)

[0.3, 0.6) Medium (Doran 1980; Ebel 1979)

[0.6 , 1] High (Doran 1980; Ebel 1979)

Reliability (point biserial [0.0, 0.3) Low (Dancey and Reidy 2004)

correlation coefficient) [0.3, 6.0) Medium (Dancey and Reidy 2004)

[0.6, 1] High (Dancey and Reidy 2004)
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questions with discrimination indices <0.3 have low discrimination, while questions with
discrimination indices ≥ 0.6 have high discrimination.

Question reliability

The question’s reliability is measured using the point biserial correlation coefficient,
which is the correlation between students scores in the question and students’ total scores
(Ding and Beichner 2009; Schmidt and Embretson 2003; Brown 1996):

Rpbi = (x̄1 − x̄0)
σ x

√
Pi ∗ (1 − Pi) (3)

Where Rpbi is the point biserial correlation coefficient for question i, x̄1 is the average
total score of students who correctly answered question i, x̄0 is the average total score for
students who did not answer question i correctly, σ x is the standard deviation of students’
total scores, and Pi is the difficulty index for question i. Rpbi value ranges from [-1, 1]
and high Rpbi value means that students who selected the correct answer are students
with high total scores and students who selected the incorrect answer are students with
low total scores. Higher Rpbi values are better (Ding and Beichner 2009). The reliability
is also used to measure the question’s discrimination. Table 2 shows that questions with
Rpbi <0.3 have low reliability (discrimination) while questions with Rpbi ≥ 0.6 have strong
reliability (discrimination).

Test discrimination power

The test discrimination power is measured using Ferguson’s delta (δ) (Ferguson 1949),
which investigates how broadly the test scores are distributed over the possible range of
scores (Zhang and Lidbury 2013). Ferguson’s delta (δ) is measured using the following
formula:

δ =
(

N2 − ∑K
i=1 f i

N2 − N2/(K + 1)

)

(4)

Where N is the total number of student who attempted the test, fi is the number of
students whose total score is i, k is the number of questions in a test. δ ranges from 0
to 1, where 0 indicates that the test has minimal discrimination and this occurs when
all students have the same score. On the other hand, when δ is 1 this means all possi-
ble scores occur in the test with the same frequency (Hankins 2007). Ferguson’s delta
(δ) value greater than 0.9 is considered a good discrimination as it represent the normal
distribution of scores (Kline 1986; 2013a; 2013b).

Test reliability

The test reliability is measured using Cronbach’s α (Cronbach and Shavelson 2004), which
measures the internal consistency of the test by finding the correlation between each
question’s score in the test and the whole test score. In other words, Cronbach’s α exam-
ines whether a test is constructed from questions that address the same material and it is
measured using the following formula:

Cronbach α = K
K − 1

(
1 −

∑n
i=1 Pi(1 − Pi)

σ x2

)
(5)

Where K is the number of questions in a test, Pi is the difficulty index of the ith question
in the test, σ x2 is the variation of the total test scores.
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The CTT statistical measures have a range of desired values that questions and tests in
learning environments are recommended to achieve (see Table 3).
Even though the CTT is widely used in evaluating the questions and tests in learning

environments (Schmidt and Embretson 2003), it is limited in several ways: 1) Question’s
difficulty, discrimination, and reliability values vary across different samples of students
(Haladyna 1994). For example, questions’ are easy when the sample of students used in
the analysis have high ability, and questions are difficult when the sample of students have
low ability (De Ayala 2009). 2) Students and test characteristics can not be separated and
they are interpreted in the context of each other (Hambleton 1991). Question’s difficulty,
discrimination, and reliability values depend on the sample of students and the ability of
students depends on the assessment test. For example, if a test is easy this indicates that
students have high ability and vice-versa. 3) CTT is test oriented rather than question
oriented, as it can not predict how a particular student may do in a particular assessment
question (Hambleton 1991).
These limitations have been addressed by the IRT, which is explained in the following

section.

Item Response Theory

Item Response Theory (IRT) is a family of probabilistic models that relates students’ abil-
ity (θ ) to the probability of answering a test question within a particular category (Lord
1980). Similar to CTT, IRTmodels are used to assess the question’s difficulty and discrim-
ination. However, IRT addresses the CTT drawbacks by achieving the following (Baker
2001; Reckase 2009): 1) The question’s difficulty and discrimination values measured
using IRT are sample independent, i.e., question’s difficulty discrimination values does not
change across different samples of students such as high ability and low ability students.
2) Students and test characteristics in IRT can be separated; the question’s difficulty and
discrimination are independent of the sample of students used in the analysis. Moreover,
students’ ability is independent of the assessment questions

Models

IRT includes the following set of probabilistic models, which differentiate in the number
of parameters used to describe the characteristics of the assessment questions:

1) One parameter logistic model (1PL): This is the simplest model in IRT as it has one
parameter for describing the characteristics of a student (ability), and one parameter for
describing the characteristics of an assessment question (difficulty). This model assumes
that all questions in the test are equally discriminating. 1PL model is presented in the
following equation:

Table 3 CTT statistical measures desired values

CTT statistical measures Desired values Literature

Difficulty index average [0.30-0.90] (Doran 1980; Ding et al. 2006)

Discrimination index average ≥ 0.30 (Doran 1980; Zhang and Lidbury 2013)

Point biserial coefficient average ≥ 0.20 (Ding and Beichner 2009; Zhang and Lidbury 2013;
Kline 1986; Ding et al. 2006)

Cronbach’s α ≥ 0.70 (Doran 1980; Kline 2013a)

Fergusons δ ≥ 0.90 (Kline 1986; 2013a; 2013b)
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P(Xij = 1|θ j, bi) = eθ j−bi

1 + eθ j−bi
(6)

Where Xij represents the response of a student j to question i, Xij = 1 means that ques-
tion i is answered correctly and Xij = 0 means that question i is answered incorrectly. θ j
represents the ability of student j, and bi is the difficulty parameter of question i.

2) Two parameter logistic model (2PL): This model is a slightly more complex model,
as it considers both the question’s difficulty and discrimination. The model is presented
in the following equation:

P(Xij = 1|θ j, ai, bi) = eai(θ j−bi)

1 + eai(θ j−bi)
(7)

Where ai is the question’s discrimination parameter. The higher the value of ai, the
more sharply the question discriminates between high ability and low ability students.

3) Three parameter logistic model (3PL): This model is more complex than the previ-
ous models. It considers the possibility that the student correct answers could be obtained
by guessing. The model is presented in the following equation:

P(Xij = 1|θ j, ai, bi,Gi) = Gi + (1 − Gi)
eai(θ j−bi)

1 + eai(θ j−bi)
(8)

Where Gi is the guessing parameter which accounts for the possibility that all students
even the ones with very low ability have a non-zero probability of answering a question
correctly by guessing.

Assumptions

In order to use the IRT models to analyse an assessment’s test data, the following two
assumptions underlying the model must be satisfied (De Ayala 2009; Reckase 2009;
Hambleton and Swaminathan 1985; Comer and Kendall 2013; Toland 2014):

1) Unidimensionality: This assumption means that the assessment test measures only
one ability parameter (θ ), while multi-dimensionality means the test measures more than
one ability parameter. Uni-dimensionality could be examined using the Principle Com-
ponent Analysis (PCA) test (Chou and Wang 2010). PCA outputs the number of com-
ponents underlying the assessment test. If one component is found the uni-dimensional
IRT (UIRT) models can be used to analyse the assessment test data, otherwise the
multidimensional IRT (MIRT) can be applied to the assessment test data.

2) Local independence: This assumption states that the only influence on an individ-
ual question response is that of the ability parameter being measured (De Ayala 2009).
This indicates that there is no influence on the individual question response from other
questions or other ability variables. The term local is used to indicate that responses are
assumed to be independent at the level of individual students having the same ability
(θ ). Local independence is examined using the Local Dependence chi-square (LD x2) test
which is applied for each pair of questions in the assessment test (Chen and Thissen 1997).
The LD x2 is computed by comparing the observed and expected frequencies of students’
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responses for each pair of questions. In addition, it is applied under the null hypothesis
that there is local independence between each pair of questions.

Model selectionmethods

Selecting the IRT model, which is the closest fit to the assessment test data is essential to
obtain question’s difficulty and discrimination values which are invariant across different
samples of students (Hambleton and Swaminathan 1985; Gler et al. 2014). In this paper
the following methods have been used to select the IRT model with the closest fit to the
assessment test data:

1) The likelihood ratio: The Liklihood Ratio (LR) statistical test (De Ayala 2009; Comer
and Kendall 2013; Toland 2014) could be used to select the best IRTmodel from the three
nested models (1PL, 2PL, and 3PL). Moreover, it could be used to select the best model
from UIRT and MIRT models, which have different dimensions and the same number
of parameters. LR is a chi-square based statistical test and it is measured as the differ-
ence between deviances for the two IRT models being compared. The deviance statistic
is defined as:

−2 ∗ log(MaximumLikelihood(model)) (9)

The maximum likelihood (ML) is obtained for the IRT models using Bock and Aitkin’s
Expectation-Maximization algorithm (BAEM) (Bock and Aitkin 1982). The LR statisti-
cal test is applied under the null hypothesis that there is no difference between the two
compared models (model 1 and model 2). If the difference between the models deviances
which has a chi-square distribution is statistically significant then model 2 has better fit
to the assessment test data compared to model 1, otherwise, model 1 has a better fit to
the assessment test data.

2) Information theoretic methods: The LR test tends to select models with more
parameters (e.g., the 2PL model) which are more complex models and may be a better
fit to the assessment test data compared to the models with fewer parameters (e.g., 1PL
model) (De Ayala 2009; Kang and Cohen 2007). Therefore, the Akaike’s Information Cri-
terion (AIC) (Akaike 1974) and the Bayesian Information Criterion (BIC) (Schwarz 1978)
are model selection methods, which penalise the IRT models according to their complex-
ity. They are used as a trade-off between the complexity of the model and the goodness
of fit between the model and the assessment test data. Akaike’s Information Criterion is
measured using the following equation:

AIC(model) = −2 ∗ log(MaximumLikelihood(model)) + 2 ∗ Nparm (10)

Where −2∗ log(MaximumLikelihood(model)) is the deviance andNparm is the number
of parameters being estimated. The model with the smallest AIC is the closest fit to the
assessment test data (De Ayala 2009; Toland 2014).
Bayesian Information Criterion is measured using the following equation:

BIC(model) = −2 ∗ log(MaximumLikelihood(model)) + log(N) ∗ Nparm (11)

Where Nparm is the number of parameters being estimated, N is the sample size which
is the total number of students who attempt the assessment test. The model with the
smallest BIC is the closest fit to the assessment test data (De Ayala 2009; Toland 2014).
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Equation. 10 shows that AIC penalise the model based on the number of parameters esti-
mated and it does not take into account the sample size. This results in AIC favouring
more complex models when the sample size increase (Kang and Cohen 2007; DeMars
2012). On the other hand, BIC tends to select models that are simpler than those selected
by AIC when the sample size is large (Kang and Cohen 2007). Equation 11 shows that
BIC takes into account the sample size and the penalty for model complexity increases for
large samples (DeMars 2012).

Experimental study
This section presents the research questions which will be answered using the evaluation
methods discussed in the previous section. In addition, it presents the experimental set-
up and participants.

Experiment questions

This experiment aims to answer two main questions:

1. Do the questions and tests generated from ontologies have satisfactory difficulty,
discrimination and reliability values?

2. Do the ontology-based generation strategies and the level of the questions in
Bloom’s taxonomy affect the questions’ difficulty and discrimination?

Experimental set-up

A question generator prototype was developed in Java and used to generate true and
false, multiple choice, and short answer questions using the ontology-based generation
strategies defined by Papasalouros et al. (2017); Papasalouros et al. (2011), Cubric and
Tosic (2017), Grubisic (2012); Grubisic et al. (2013), and Al-Yahya (2014); Al-Yahya (2011).
Figure 1 shows an example of a class-based strategy integrated in the question generator.
The question generator also integrated 20 question stem templates defined by Grubisic
(2012); Grubisic et al. (2013), Cubric and Tosic (2017) to auto-generate questions aim
to assess student’s cognition at the knowledge, comprehension, application and analysis
levels in Bloom’s taxonomy. Table 4 shows part of the stem templates integrated in the
question generator.
Grubisic (2012); Grubisic et al. (2013) knowledge level stem templates focused on

assessing if students could recall concepts in the domain ontology and understand the
subclasses or superclasses properties between concepts. The comprehension level stem
templates focused on the meaning of the concepts in terms of their relationship with
other concepts in the domain. Application level stem templates assumed that students
are more familiar with the domain ontology being tested, as students are asked about
the relationship between individuals and concepts in the domain ontology. Analysis level

Fig. 1 An example of a Class-based strategy
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Table 4 Part of the stem templates analysed in the experiment

Question
number

Stem template Bloom’s level Literature

1 Are Class A and Class B directly connected? Knowledge Grubisic et al. (2013)

2 Which one of the following response pairs
relates in the same way as: Class A Property
Class B

Comprehension Cubric and Tosic (2017)

3 Which one of the following demonstrates
the concept Class A?

Application Cubric and Tosic (2017)

4 Analyse the following text and decide which
one of the following words is a correct
replacement for the blank space in the text?

Analysis Cubric and Tosic (2017)

stem templates focused on assessing the concept’s annotation properties and the con-
cept’s datatype and object properties with other concepts in the domain ontology. Cubric
and Tosic followed a different approach in forming the stem templates. They used words
that define each level in Bloom’s taxonomy such as demonstrate, define, relate, and
analyse (Assessment 2002; Felder and Brent 1997). No generation strategies or stem tem-
plates were defined by Papasalouros et al. (2017); Papasalouros et al. (2011), Cubric and
Tosic (2017), Grubisic (2012); Grubisic et al. (2013), and Al-Yahya (2014); Al-Yahya (2011)
to auto-generate questions which assess students at the synthesis and evaluation levels in
Bloom’s taxonomy.
The Computer Networks (Murugan et al. 2013) and the OpenCyc (Matuszek et al. 2006)

ontologies were used to auto-generate questions which covered the ’transport layer’ topic.
44 questions were chosen and syntactically checked by a domain expert who is a lecturer
in the School of Computer Science and teaches the Computer Networks course. After
that, the questions were imported intoMoodle VLE to form three different tests. Tables 5,
6, and 7 illustrate the distribution of the questions generated using the ontology-based
generation strategies. Each test contained true and false, multiple choice and short answer
questions, and consisted of questions which aim to assess students’ cognition at different
levels in Bloom’s taxonomy. Table 7 shows that the number of short answer questions used
in the experiment was small compared to the true and false andmultiple choice questions.
This is due to that fact that Grubisic (2012); Grubisic et al. (2013) and Al-Yahya (2014);
Al-Yahya (2011) defined only two generation strategies and stem templates for generating
short answer questions.
The quality of questions generated was evaluated using the CTT and IRT which are

explained in details in Sec.2.

Participants

In 2013/2014, third year undergraduate students registered in the Data networking course
(TUO a) and the Computer Networks course (TUO b) at the University of Manchester,

Table 5 Distribution of questions based on the generation strategies

Test Number of questions
Generation strategies

Class Terminology Property

1 14 1 4 9

2 16 1 4 11

3 14 1 4 9
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Table 6 Distribution of questions based on the level of the questions in Bloom’s taxonomy

Test Number of questions
Level of the question bloom’s taxonomy

Knowledge Comprehension Application Analysis

1 14 4 4 4 2

2 16 4 4 4 4

3 14 4 4 4 2

volunteered to take part in the experiment. In total, 126 students attempted test-one, 88
students attempted test-two, and 89 students attempted test-three. Students accessed the
three tests using Moodle VLE. Their responses were recorded and used to analyse the
quality of the questions and tests.

Results and discussion
This section illustrates the experiment results obtained using the CTT and IRT. Before
applying the IRT models to the assessment test data, the uni-dimensionality and local
independence assumptions were investigated. Table 8 illustrates the results obtained by
applying the PCA to test-one, which consists of 14 questions and was answered by 126
students. Initially, 14 components were identified; i.e., the number of components equals
the number of questions in test-one. Table 8 shows that test-one data results in six com-
ponents with eigenvalues greater than one. The first component had a 2.225 eigenvalue
which is higher than the next five components (1.635, 1.248, 1.213, 1.078, and 1.004).
15.894% of the test variance was explained by the first component and a cumulative
variance of 60.02% was explained by the first six components (see Table 8). The results
obtained using the PCA suggests that test-one is not unidimensional and it does not mea-
sure a single ability parameter. The same analysis were applied to test-two and test-three
and the results obtained also suggest that both tests are not unidimensional.
The local dependence assumption was also investigated on test-one, test-two and test-

three data using the LD x2 test. The results revealed that the questions are independent
of each other.
After the assumptions were investigated, several IRT models were applied to the three

tests and the model selection methods explained in Section Model selection methods
were used to select the model with the best fit. The PCA analysis revealed that test-one
is not unidimensional, and six components had eigenvalues greater than one. Therefore,
the model’s data fit analysis was examined using the UIRT, and the MIRT models starting
from two dimensions and up to six dimensions. The following abbreviations are used
throughout the analysis:

UIRT(M)

[ D]−MIRT(M)

Table 7 Distribution of questions based on types of questions

Test
Number of questions

Types of question

True/ False Multiple choice Short answer

1 14 4 10 0

2 16 4 11 1

3 14 4 9 1
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Table 8 Total variance explained by each component in test-one

Initial eigenvalues
Component

Total % of Variance Cumulative %

1 2.225 15.894 15.894

2 1.635 11.678 27.572

3 1.248 8.914 36.485

4 1.213 8.661 45.146

5 1.078 7.701 52.847

6 1.004 7.173 60.020

7 0.942 6.731 66.751

8 0.830 5.926 72.677

9 0.785 5.608 78.285

10 0.736 5.258 83.543

11 0.668 4.772 88.315

12 0.620 4.428 92.743

13 0.549 3.923 96.666

14 0.467 3.334 100.000

Where M is the type of IRT model which could be one parameter logistic model (1PL),
two parameter logistic model (2PL), or three parameter logistic model (3PL). D is only
used with MIRT as it represents the number of dimensions in IRT.
The analysis started with the 2PLmodel. Table 9 illustrates the likelihood ratio, Akaike’s

information criterion (AIC), and the Bayesian information criterion (BIC) goodness of fit
statistics after applying UIRT (2PL) and MIRT (2PL) models to test-one.
Table 10 shows the chi-square test between several models. The results revealed that

AIC, BIC and chi-square tests gave consistent results identifying the 2-MIRT (2PL) model
as the best fit for test-one data, as 2-MIRT (2PL) had the smallest AIC and BIC values,
and the chi-square test revealed a statistically significant difference between the 2-MIRT
(2PL) and the UIRT (2PL) models.
Further investigations were carried out to examine the effect of changing the type of IRT

model (e.g., 2PL and 3PL) in 2-MIRT on the goodness of fit statistics. Table 11 shows the
goodness of fit statistics for the 2-MIRT (2PL) and the 2-MIRT (3PL) models. The results
revealed that 2-MIRT (2PL) fits test-one data better than 2-MIRT (3PL), as it has lower
AIC and BIC values, and the chi-square test revealed no statistically significant difference
(P-value >0.05) between the 2-MIRT (2PL) and the 2-MIRT (3PL) models (see Table 12).
In summary, the 2-MIRT (2PL) model was the closest fit to test-one. The same analysis
were applied to test-two and test-three data and the results revealed that the UIRT (2PL)
model has the closest fit to test-two and test-three. The 2PL model in the three tests
assumes that questions have no guessing parameter.

Table 9 Goodness of fit statistics for UIRT (2PL) and MIRT (2PL) models in test-one

IRT models -2 log likelihood Free parameters AIC BIC

UIRT (2PL) 2085.82 28 2141.82 2144.63

2-MIRT (2PL) 2057.31 41 2139.31 2143.43

3-MIRT (2PL) 2044.58 56 2156.58 2162.2
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Table 10 Chi-square tests comparing the fit of UIRT (2PL) and MIRT (2PL) models

Comparison x2 Degree of freedom (DF) P-value

UIRT (2PL) 2-MIRT (2PL) 29.5 13 P-value <0.01

2-MIRT (2PL) 3-MIRT (2PL) 11.47 15 P-value >0.05

Do the questions and tests generated from ontologies have satisfactory difficulty,

discrimination and reliability values?

The questions difficulty indices measured using the CTT when applied to questions
administered to third year undergraduate students registered in the Data networking
course and the Computer Networks course at the University ofManchester could be sum-
marised as follows: The questions difficulty indices varied from very easy to very difficult
in test-one (see Table 13), and very easy to moderately difficult in test-two (see Table 14)
and test-three (see Table 15). 16% (7 questions out of 44) of the questions in the three
tests were very easy or very difficult which results in low discriminating questions.
The CTT analysis results also revealed when applied to tests administered to third year

undergraduate students that the three tests had medium difficulty with 0.525, 0.540, and
0.564 average difficulty index values. The difficulty fall within the CTT desired range of
values (see Tables 16, 17, and 18) (Doran 1980; Ding et al. 2006). In addition, the tests’
average difficulty index values were very close to 0.5, which is the value that test authors
are advised to achieve when constructing questions and where the test have the maxi-
mum discrimination (Doran 1980; Mitkov et al. 2017; Mitkov et al. 2006). The maximum
discrimination is obtained only when all the students with high ability (students with high
scores) answer the questions correctly and all the students with low ability do not answer
the questions correctly.
The IRT was also used to assess the question’s difficulty due to its invariance assump-

tion. Tables 19, 20, and 21 illustrates the IRT analysis results obtained for test-one,
test-two, and test-three accordingly. The results revealed a strong relationship between
the difficulty indices obtained using the CTT and IRT (Pearson R= -0.602, P-value<0.05).
In addition, the IRT analysis revealed that 22.7% (10 questions out of 44) of the questions
were either very easy or very difficult.
The discrimination was also measured for the individual questions and the entire

assessment tests. The question discrimination indices obtained using the CTT when
applied to the three tests administrated to third year undergraduate students (see
Tables 13, 14, and 15) had positive values. This indicates that the auto-generated ques-
tions may not need to be reviewed or eliminated from the assessment tests (Doran 1980;
Mitkov et al. 2006; Mitkov and Ha 2017). In addition, the three tests had satisfactory aver-
age discrimination values above 0.30 (see Tables 16, 17, and 18) which indicates that
the questions could efficiently discriminate between high ability and low ability students
(Doran 1980; Zhang and Lidbury 2013; Thorndike andHagen E 2017; Corkins 2009). Sim-
ilar results were obtained using the IRT, which could be seen in Tables 19, 20, and 21. The
results revealed that the questions in the three tests had positive discrimination values

Table 11 Goodness of fit statistics for 2-MIRT (2PL) and 2-MIRT (3PL) models

IRT models -2 log likelihood Free parameters AIC BIC

2-MIRT (2PL) 2057.31 41 2139.31 2143.43

2-MIRT (3PL) 2042.87 70 2182.87 2389.9
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Table 12 Chi-square tests comparing the fit of 2-MIRT (2PL) and 2-MIRT (3PL) models

Comparison x2 Degree of freedom (DF) P-value

2-MIRT (2PL) -2-MIRT (3PL) 14.44 29 P-value >0.05

and that the auto-generated questions may not need to be reviewed or eliminated from
the assessment tests (Baker 2001; Hambleton and Swaminathan 1985).
The CTT was also used to obtain the tests’ discrimination power using Ferguson’s

delta. The results revealed that the three tests had satisfactory discrimination power with
Ferguson’s delta values above 0.90 which is the discrimination power for normally
distributed test scores.
The questions’ reliability was measured using the point biserial correlation coefficients

(Rpb), which is shown in Tables 13, 14, and 15. The results revealed that the question’s
reliability values in the three tests administrated to third year undergraduate students
were positive and the questions’ could effectively discriminate between low ability and
high ability students as the average point biserial coefficients in each test were satisfactory
with values above 0.2.
The test’s reliability values was obtained using Cronbach’s α, which revealed that test-

one and test-two had poor reliability with 0.54, 0.56 reliability values respectively, while
test-three had a higher reliability value (0.604), which is considered acceptable. The tests
low reliability values obtained using Cronbach’s α are due to the fact that the individual
questions in each test had satisfactory reliability values (Rpb) which are not high enough
to improve the tests’ overall reliability (Jones 2009). Higher Rpb values are desired and
lower Rpb values indicate that a question is not testing the same educational material or
may not be testing the same educational material at the same level (Ding and Beichner
2009). In this experiment the questions are generated from the same domain ontologies
(OpenCyc and Computer Networks). As a result the context of the educational material
being tested is known. However, the auto-generated questions were designed to assess
different educational concepts at different levels of Bloom’s taxonomy, whichmay result in
satisfactory reliability values at the questions’ level (average Rpb) but low reliability values
at the test’s level (Cronbach’s α).

Table 13 Questions’ analysis in test-one (number of students’ attempts = 126)

Question Difficulty index Discrimination index Rpb

1 Moderately easy (0.770) Low (0.226) Low (0.216)

2 Very easy (0.897) Low (0.258) Low (0.261)

3 Moderately difficult (0.579) Medium (0.516) Medium (0.445)

4 Moderately difficult (0.365) Medium (0.355) Low (0.270)

5 Moderately difficult (0.373) Low (0.290) Low (0.233)

6 Moderately difficult (0.508) High (0.710) Medium (0.479)

7 Moderately difficult (0.532) High (0.613) Medium (0.460)

8 Moderately easy (0.635) High (0.677) Medium (0.541)

9 Moderately easy (0.651) High (0.613) Medium (0.521)

10 Very difficult (0.333) Low (0.226) Medium (0.333)

11 Very difficult (0.087) Low (0.129) Low (0.267)

12 Moderately difficult (0.540) Medium (0.516) Medium (0.347)

13 Moderately difficult (0.595) High (0.645) Medium (0.496)

14 Moderately difficult (0.484) Medium (0.484) Medium (0.362)
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Table 14 Questions’ analysis in test-two (number of students’ attempts = 88)

Question Difficulty index Discrimination index Rpb

1 Moderately difficult (0.580) Medium (0.409) Low (0.297)

2 Moderately easy (0.739) Medium (0.318) Low (0.241)

3 Moderately difficult (0.545) Low (0.273) Low (0.196)

4 Moderately easy (0.761) Medium (0.318) Low (0.274)

5 Moderately difficult (0.432) Medium (0.409) Medium (0.382)

6 Moderately difficult (0.420) Medium (0.500) Medium (0.488)

7 Moderately easy (0.614) Low (0.182) Low (0.193)

8 Very difficult (0.295) Medium (0.455) Medium (0.368)

9 Moderately difficult (0.432) High (0.682) Medium (0.489)

10 Moderately difficult (0.523) Medium (0.318) Low (0.263)

11 Very difficult (0.284) Medium (0.409) Medium (0.378)

12 Moderately easy (0.773) Medium (0.545) Medium (0.457)

13 Moderately difficult (0.489) High (0.727) Medium (0.524)

14 Moderately easy (0.625) Medium (0.455) Medium (0.455)

15 Moderately easy (0.636) Medium (0.500) Medium (0.371)

16 Moderately difficult (0.500) Medium (0.545) Medium (0.518)

Do the ontology-based generation strategies and the level of the questions in Bloom’s

taxonomy affect the questions’ difficulty and discrimination?

This section studies the effect of the ontology-based generation strategies and the level of
questions in Bloom’s taxonomy on the questions’ difficulty and discrimination obtained
using the CTT (dependent on the sample of students) and the IRT (independent from the
sample of students).
The study was carried out on the CTT difficulty and discrimination indices obtained

for the whole 44 questions (total number of assessment question in test-one, test-two, and
test-three), and on the IRT difficulty and discrimination indices, which did not experi-
ence variance across different samples of students. The invariance of IRT measurements
was tested for the whole 44 questions by dividing the students in each test (test-one, test-
two, and test-three) into two groups: low ability students (students with test scores less

Table 15 Questions’ analysis in test-three (number of students’ attempts = 89)

Question Difficulty index Discrimination index Rpb

1 Moderately easy (0.708) Medium (0.409) Low(0.294)

2 Moderately easy (0.652) Medium (0.318) Low (0.258)

3 Moderately easy (0.764) Medium (0.409) Medium (0.360)

4 Moderately easy (0.640) Medium (0.318) Medium (0.300)

5 Moderately easy (0.663) High (0.636) Medium (0.504)

6 Moderately difficult (0.483) Medium (0.591) Medium (0.429)

7 Very difficult (0.337) Medium (0.455) Medium (0.433)

8 Moderately difficult (0.427) Medium (0.591) Medium (0.524)

9 Moderately easy (0.798) Medium (0.409) Medium (0.373)

10 Moderately easy (0.674) Medium (0.500) Medium (0.428)

11 Very difficult (0.247) Low (0.273) Low (0.239)

12 Moderately difficult (0.360) High (0.727) Medium (0.508)

13 Moderately difficult (0.416) Medium (0.591) Medium (0.465)

14 Moderately easy (0.730) Medium (0.545) Medium (0.476)
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Table 16 Test-one analysis (number of students’ attempts = 126)

Test statistics Value Description Desired values

Questions’ difficulty index average 0.525 Medium difficulty [0.3-0.9]

Questions’ discrimination index average 0.445 Satisfactory ≥0.3

Questions’ reliability average (point biserial coefficient) 0.266 Satisfactory ≥0.2

Test reliability index 0.540 Poor ≥0.7

Test discrimination power (Ferguson’s delta ) 0.540 Satisfactory ≥0.9

than 50%) and high ability students (students with test scores above or equal 50%) fol-
lowing the approach in (Hambleton and Swaminathan 1985). Students in each test could
also be divided according to their gender or year of study (De Ayala 2009; Crocker and
Algina 1986). However, this was not applicable in the experiment carried out in this paper
due to the large difference in students’ numbers when the students in each test were
divided according to their gender or year of study. The IRT model, which has the best
fit to the whole sample of students in each test, was applied to the low ability and high
ability sample of students separately to obtain the questions’ difficulty and discrimination
indices. The standard deviation was measured for the question’s difficulty and discrimi-
nation across the three groups of students: the whole sample of students, students with
low ability, and students with high ability. Questions with large standard deviation values
compared to other questions in the assessment test were considered outliers as they expe-
rienced high variance across the three groups of students. In total 10 questions out of 44
violated the IRT invariance assumption and were not used in the upcoming evaluations.

Does the ontology-based question generation strategy affect the question difficulty and

discrimination?

The results revealed that generating questions using different generation strategies (class,
terminology, and property) appear to affect the question difficulty and discrimination
obtained using the CTT and IRT. A statistically significant difference in the CTT difficulty
indices (U = 69, P-value <0.05) and IRT difficulty indices (U = 26, P-value <0.05) was
found between questions generated using the terminology-based strategies and questions
generated using the property-based strategies. This suggests that students found ques-
tions which assess their knowledge about an educational concept and how it is related to
other concepts using the superclass and subclass properties easier than questions which
assess their knowledge about the concept’s object, datatype, and annotation proper-
ties). Questions generated using terminology-based strategies had higher CTT difficulty
indices (Spearman’s R = 0.476, P-value <0.01) and lower IRT difficulty indices (Spear-
man’s R = -0.583, P-value <0.01). Higher difficulty indices in CTT means the question is
easy while in IRT it means the question is more difficult.

Table 17 Test-two analysis (number of students’ attempts = 88)

Test statistics Value Description Desired values

Questions’ difficulty index average 0.540 Medium difficulty [0.3-0.9]

Questions’ discrimination index average 0.440 Satisfactory ≥0.3

Questions’ reliability average (point biserial coefficient) 0.360 Satisfactory ≥0.2

Test reliability index 0.560 Poor ≥0.7

Test discrimination power (Ferguson’s delta ) 0.955 Satisfactory ≥0.9
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Table 18 Test-three analysis (number of students attempts = 89)

Test statistics Value Description Desired values

Questions difficulty index average 0.564 Medium difficulty [0.3-0.9]

Questions discrimination index average 0.484 Satisfactory ≥0.3

Questions reliability average (point biserial coefficient) 0.399 Satisfactory ≥0.2

Test reliability index 0.604 Acceptable ≥0.7

Test discrimination power (Ferguson’s delta ) 0.966 Satisfactory ≥0.9

No statistical significant difference was found in the CTT and IRT difficulty indices
between questions generated using class-based strategies and terminology-based strate-
gies, and between questions generated using class-based strategies and property-based
strategies. This suggests that the students found questions auto-generated using the indi-
vidual and class relationship in the ontology as difficult as questions generated using the
terminology-based strategies and the property-based strategies.
The questions’ discrimination indices were also investigated and the results revealed a

statistical significant difference in CTT discrimination indices (U= 74, P-value <0.05),
CTT Rpb (U = 59, P-value <0.05), and IRT discrimination indices (U = 43, P-value
<0.05) between questions generated using the terminology-based strategies and ques-
tions generated using the property-based strategies. Questions generated using the
terminology-based strategies have better discrimination values compared to questions
generated using the property-based strategies; questions generated using terminology-
based strategies had higher CTT discrimination indices (Spearman’s R = 0.454, P-value
<0.01), higher CTT Rpb (Spearman’s R = 0.521, P-value <0.01), and higher IRT discrim-
ination indices (Spearman’s R = 0.456, P-value <0.01) compared to questions generated
using the property-based strategies.
The results also revealed that there is a statistical significant difference in CTT dis-

crimination indices (U = 2, P-value <0.05) and CTT Rpb (U = 2, P-value <0.05) between
questions auto-generated using class-based strategies and terminology-based strategies.
Questions generated using terminology based strategies had higher CTT discrimina-
tion indices (Spearman’s R = 0.63, P-value <0.05), and higher CTT Rpb (Spearman’s
R = 0.617, P-value <0.05) compared to questions generated using class-based strategies.

Table 19 Questions’ difficulty and discrimination indices using IRT (test-one)

Q Difficulty index Discrimination index

1 Medium (-0.030) Moderate (0.986)

2 Very easy (-2.603) Low (0.484)

3 Easy (-1.800) Perfect (1.712)

4 Medium (-0.374) Moderate (1.043)

5 Difficult (0.837) Moderate (0.740)

6 Very difficult (7.354) Very low (0.071)

7 Medium (-0.131) Moderate (1.073)

8 Easy (-0.515) High (1.458)

9 Easy (-0.584) High (1.421)

10 Difficult (0.854) Moderate (0.972)

11 Very difficult (3.323) Moderate (0.779)

12 Medium (-0.133) High (1.500)

13 Medium (-0.391) Moderate (1.305)

14 Medium (0.072) Moderate (1.105)
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Table 20 Questions’ difficulty and discrimination indices using IRT (test-two)

Question Difficulty index Discrimination index

1 Easy (-1.81) Very low (0.18)

2 Very easy (-2.23) Low (0.49)

3 Easy (-0.99) Very low (0.19)

4 Very easy (-10.33) Very low (0.11)

5 Difficult (0.66) Low (0.43)

6 Medium (0.42) Moderate (0.89)

7 Very easy (-8.44) Very low (0.05)

8 Difficult (1.16) Moderate (0.86)

9 Medium (0.28) Moderate (1.22)

10 Medium (-0.29) Very low (0.32)

11 Difficult (1.87) Low (0.52)

12 Easy (-1.66) Moderate (0.84)

13 Medium (0.02) Perfect (2.75)

14 Easy (-1.5) Low (0.35)

15 Easy (-0.98) Low (0.63)

16 Medium (-0.01) High (1.48)

However, this result depends on the sample group of students as no statistical significant
difference was found in the IRT discrimination indices (sample independent) between
questions generated using the class-based strategies and questions generated using the
terminology-based strategies. In addition, no statistical significant difference was found
in the CTT discrimination indices, the CTT Rpb, and IRT discrimination indices between
the questions generated using class-based and property based strategies. This suggests
that the class-based and property-based strategies produce questions, which have similar
discrimination indices.

Do Bloom’s taxonomy stem templates affect the question difficulty and discrimination?

Grubisic (2012); Grubisic et al. (2013), Cubric and Tosic (2017) defined several
question stem templates to auto-generate questions aimed to assess students’ cog-
nition at different levels in Bloom’s taxonomy. However, they never investigated

Table 21 Questions’ difficulty and discrimination indices using IRT (test-three)

Question Difficulty index Discrimination index

1 Very easy (-2.51) Low (0.37)

2 Very easy (-3.32) Very low (0.19)

3 Very easy (-2.06) Low (0.62)

4 Easy (-1.51) Low (0.42)

5 Easy (-0.76) Moderate (1.17)

6 Medium (0.09) Moderate (0.70)

7 Difficult (0.88) Moderate (0.87)

8 Medium (0.31) Moderate (1.08)

9 Easy (-1.48) Moderate (1.17)

10 Easy (-0.99) Moderate (0.86)

11 Very difficult (6.10) Very low (0.18)

12 Difficult (0.60) Moderate (1.18)

13 Medium (0.38) Moderate (1.04)

14 Easy (-1.05) Moderate (1.32)
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whether the question stem templates order the auto-generated questions accord-
ing to their easiness in Bloom’s taxonomy or whether the question stem tem-
plates affect the questions’ discrimination. Therefore, this section investigates the
effect of the level of question in Bloom’s taxonomy on the question difficulty and
discrimination.
The results revealed that the question stem templates defined by Grubisic (2012);

Grubisic et al. (2013), Cubric and Tosic (2017) appear to order questions according
their easiness in Bloom’s taxonomy. A statistical significant difference in the CTT dif-
ficulty indices (U = 21, P-value <0.05) and IRT difficulty indices (U = 13, P-value
<0.05) was found between questions in the knowledge and comprehension levels.
Questions generated to assess the students in the knowledge level are easier than ques-
tions generated to assess the students in the comprehension level, as they have higher
CTT difficulty indices (Spearman’s R = 0.614, P-value <0.01) and lower IRT diffi-
culty indices (Spearman’s R = -0.616, P-value <0.01). The results are expected as the
knowledge level stem template shown in Table 4 focused on assessing whether stu-
dents could recall concepts and are aware of the subclass and superclass relationships
between concepts. However, the comprehension level stem templates focused on stu-
dents’ understanding about the similarity of the relationship between concepts (see
question 2 in Table 4) and whether students know all the concept’s subclasses and
superclasses.
The results also revealed that questions in the knowledge level were easier than ques-

tions in the application and analysis level. This is due to the fact that the application level
stem templates defined by Grubisic (2012); Grubisic et al. (2013), Cubric and Tosic (2017)
focused on the relationship between the individual and superclass (see question 3) as
students need to provide an example of the concept he/she learned. Similarly, in the anal-
ysis level stem templates students are assessed on the annotation and object properties
in classes and individuals (see question 4). For students, these stem templates are harder
than knowledge level stem templates which focus on recalling concepts in the domain
ontology.
However, no statistical significant difference in the CTT difficulty indices and IRT diffi-

culty indices was found between the other levels in Bloom’s taxonomy. This suggests that
comprehension, application, and analysis level questions appeared to have to the same
difficulty to students.
Questions’ discrimination was also investigated and the results revealed that the knowl-

edge level questions, which are the easiest questions, tend to have lower discrimination
compared to comprehension, application and analysis level questions. On the other hand,
no statistical significant difference in the CTT discrimination indices, CTT Rpb, and
IRT discrimination indices was found between comprehension, application, and analysis
level questions which suggest that comprehension, application and analysis question stem
templates auto-generate questions which have the same discrimination.

Conclusion and future work
This paper presented the experiment carried out to analyse the quality of the questions,
which were generated using Papasalouros et al. (2017); Papasalouros et al. (2011), Cubric
and Tosic (2017), Grubisic (2012); Grubisic et al. (2013), and Al-Yahya (2014); Al-Yahya
(2011) question generators. It has three main contributions to the field of ontology-based
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question generators: 1) Developing an ontology-based question generator which inte-
grates the preexisting stem templates and generation strategies to generate questions that
assess students at different levels in Bloom’s taxonomy. 2) providing a quantitative analysis
for the auto-generated questions using the CTT and IRT statistical methods. 3) Study-
ing the effect of the ontology-based generation strategies and the level of the questions in
Bloom’s taxonomy on the questions quality measurements.
The results obtained using the CTT revealed that the three assessment tests formed

from the auto-generated questions had medium difficulty values, which are very close
to the value (0.5) that the test authors are advised to achieve when constructing
tests Doran (1980); Mitkov et al. (2017); Mitkov et al. (2006). In addition, the results
revealed that the questions and tests had satisfactory positive discrimination values,
which indicate that the questions and tests could effectively discriminate between
high ability and low ability students, and that the questions may not need to be
reviewed or eliminated from the assessment tests Doran (1980); Mitkov et al. (2006);
Mitkov and Ha (2017). In addition to the CTT, the Item Response Theory (IRT)
was used to assess the quality of the auto-generated questions because of its invari-
ant assumption. The IRT analysis revealed similar results to the CTT, as the ques-
tions’ discrimination indices had positive values which justify that the auto-generated
questions may not need to be reviewed or eliminated from the assessment tests
Baker (2001); Hambleton and Swaminathan (1985).
As mentioned earlier, this paper also investigated the effect of the ontology-based gen-

eration strategies and the level of the questions in Bloom’s taxonomy on the questions
quality measurements. The results revealed that the generation strategies and the level of
the questions in Bloom’s taxonomy affect the question’s difficulty and discrimination. This
provides guidance for developers and researchers working in the field of ontology-based
question generators.
The analysis results obtained were based on 44 questions generated from the ’transport

layer’ topic and used in three different tests which consequently consists of 14, 16 and
14 questions. The experiment could be enhanced in the future work by: 1) increasing the
number of questions in each test. 2) Increasing the number of students participating in
the experiment. 3) Generating questions from different topics in the computer networks
domain or different domains (e.g., medicine).
The experiment results obtained using the CTT and IRT could be used in future work to

build a prediction model using machine learning techniques (e.g., multiple linear regres-
sion James et al. (2014)) to predict the question’s difficulty (very difficult, moderately
difficult, moderately easy, and very easy) and discrimination (low, medium, and high)
in the computer networks domain using the following two features: the ontology-based
generation strategy and the level of the question in Bloom’s taxonomy. This will help
researchers and developers save time and effort in terms of testing the auto-generated
questions on real students Arnold et al. (1996). In addition, the ontology-based question
generator developed for the purpose of analysing the auto-generated questions quanti-
tatively could be enhanced in the future work to auto-generate personalised formative
feedback which takes into account the question characteristics (e.g., the level of question
in Bloom’s taxonomy) Mason and Bruning (2001).
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