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Abstract
Learning basic concepts before complex ones is a natural form of learning. Automated
systems and instructional designers evaluate and order concepts’ complexity to
successfully generate and recommend or adapt learning paths. This paper addresses
the specific challenge of accurately and adequately identifying concept prerequisites
using semantic web technologies for a basic understanding of a particular concept
within the context of learning: given a target concept c, the goals are to (a) find
candidate concepts that serve as possible prerequisite for c; and, (b) evaluate the
prerequisite relation between the target and candidates concepts via a supervised
learning model. Our four step approach consists of (i) an exploration of Knowledge
Graphs in order to identify possible candidate concepts; (ii) the creation of a set of
potential concepts; (iii) deployment of supervised learning model to evaluate a
proposed list of prerequisite relationships regarding the target set; and, (iv) validation
of our approaching using a ground truth of 80 concepts from different domains (with a
precision varying between 76% and 96%).

Keywords: Concept prerequisite identification, Knowledge graphs

Introduction
The automatic identification of prerequisite relationships between concepts has been
identified as one of the cornerstones for modern, large-scale online educational appli-
cations (Gasparetti et al. 2018; Talukdar and Cohen 2012; Pan et al. 2017). Prerequisite
relations exist as a natural dependency between concepts in cognitive processes when
people learn, organize, apply, and generate knowledge (Laurence and Margolis 1999).
Recently, there has been a growing interest in automatic approaches for identifying pre-
requisites (Liang et al. 2015; Pan et al. 2017; Wang et al. 2016) and their applications
in the organization of learning resources (Manrique et al. 2018), and automatic reading
list generation (Fabbri et al. 2018). Most of these approaches take advantage of natural
language processing techniques and machine learning strategies to extract latent con-
nections among concepts in large document corpora to find prerequisite dependencies.
However, the extraction of latent connections is not trivial when dealing with unstruc-
tured data. This research uses open knowledge graphs as the main source to identify
prerequisite dependencies.
The term “Knowledge Graph” (KG) has been recently used to refer to graph-based

knowledge representations such as the one promoted by the Semantic Web community
with the RDF standard. According to (Paulheim 2017), the term “Knowledge Graph” was
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coined by Google in 2012, and is used to refer to Semantic Web knowledge bases such as
DBpedia1 or YAGO2 (Paulheim 2017). The following characteristics define a knowledge
graph:

• describes real world entities and their interrelations, organized in a graph;
• defines possible classes and relations of entities in a schema;
• allows for potentially interrelating arbitrary entities with each other; and,
• covers various topical domains.

Freebase, Wikidata3, DBpedia and YAGO are identified as the main open KGs on the
Semantic Web. KGs have several advantages for the prerequsite identification problem:
they are supported by schemes (usually an ontology), relationships among concepts have
meaning (i.e. they go beyond a simple hyperlink or co-ocurrence analysis), the degree of
connection between concepts is higher, and they use query languages like SPARQL to
support and simplify the extracttion process. Given the increasing amount of KGs being
constantly published, updated and interconnected, our hypothesis is that the prerequisite
identification can be more effective, automatic and generalizable to multiple domains by
using the KGs.
Thus, given a target concept c4, the goal is to identify its prerequisites in the KG’s con-

cept space. We first traverse the KG background knowledge to build a set of candidate
prerequisite concepts via their semantic relations. Then, the candidate set is reduced
using a pruning method as computing the prerequisite relations between c and all related
concepts in the KG space is computationally expensive and impractical. Finally, the
resulting candidate concepts are evaluated via a supervised learning model.
This paper is the continuation of an initial study conducted by the authors in

(Manrique et al. 2019). Our previous work presented a superficial validation of the pro-
posed approach being partially validated with a small set of concepts (15) from a single
domain. Additionally, an important disadvantage of the supervised method used in our
initial study is the high computational cost of the feature extraction process. This makes
it unsuitable for critical response systems or for those where it is not possible to decou-
ple the prerequisite identification step. The current work significantly expands the set of
concepts used as well as the number of domains to validate the proposed approach. Addi-
tionally, a more efficient and simple supervised method is presented using fewer features
but with similar performances to the state of the art algorithms.
The main contributions of this paper are fourfold: (i) a search strategy for candidate

concepts in the conceptual space of a KG; (ii) a pruning method to reduce the set of
candidate concepts to only the potential “prerequisite” concepts; (iii) the assembling of a
supervised learning model as a final step of the process to evaluate the prerequisite rela-
tion between the selected candidates and the target concept; and, finally, (iv) a dataset of
80 concepts in different domains for which the complete exploratory process are carried
out to identify their prerequisites.
The paper is organized as follows: “Background and related work” section review lit-

erature on the identification of prerequisites concepts and important KG’s definitions.
The “Prerequisite identification approach” section overviews our proposed approach. The

1http://dbpedia.org/
2http://www.yago-knowledge.org/
3https://www.wikidata.org/
4The target concept can be seen as a learning goal
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searching strategy and the pruning method are presented in detail in “Candidate search
module” section. The supervised learning model use for prerequisite evaluation is pre-
sented in “Prerequisite evaluation module” section. Next, we present the evaluation setup
and the discussion of the results. The paper ends with conclusions and future work.

Background and related work
From a pedagogical point of view, a prerequisite is a dependency relation that states which
concepts a student has to learn before moving to the next (Liang et al. 2017; Pan et al.
2017; Gordon et al. 2016; Adorni et al. 2019). Prerequisites are a way of making sure
that learners enter into a new topic/concept with the prior knowledge required to its
understanding. This, not only helps the learner to understandmore easily, but it also helps
he/she to feel more comfortable and confident with the subject matter (Gasparetti et al.
2018). Although the lowest level of granularity for specifying prerequisites is between
concepts, the prerequisites relationships can be naturally extended to define precedence
relations between elements of greater granularity in instructional and non-instructional
learning processes (e.g. learning resources, units, and courses).
The problem of identifying prerequisite relationships in an automatic way has been

addressed recently by researchers in the natural language area (Talukdar and Cohen
2012; Wang et al. 2016; Liang et al. 2015; Pan et al. 2017). Most of them follow a super-
vised learning approach using binary classification techniques over a set of features
extracted using Natural Language Processing (NLP) algorithms. Talukdar and Cohen
(2012), for example, proposes a supervised method for predicting prerequisite depen-
dencies between Wikipedia pages. They exploit the Wikipedia’s link graph and the graph
built upon the edit histories of each page. Features such as random walk with restart
(RWR) and Pagerank scores are extracted from such graph. Then, a Maximum Entropy
(MaxEnt) classifier is trained to predict whether the prerequisite relationship between
two Wikipedia articles. Another supervised learning-based method is presented in Pan
et al. (2017). Pan et al. (2017) implements different binary classification algorithms on
the basis of a set of features extracted from MOOCs. The algorithms consider novel
contextual and structural features extracted from course structure and from videos infor-
mation such as the survivor time of a concept in a video, the order in which the concept
appears in the course structure, and how frequent a concept is mentioned in videos after
its first occurrence. Three small datasets of Coursera courses were built for the evalua-
tion of the proposed method, and according to the authors, state-of-the-art results were
achieved. Liang et al. (2018) address the problem of the lack of large scale labels for train-
ing through active learning. Active learning is a special case of semi-supervised machine
learning in which the learning algorithm actively chooses which examples to label. Results
show that active learning can be used to reduce the amount of training data required for
concept prerequisite learning. More importantly, the authors also propose a novel set of
graph-based features for representing concept pairs.
Another NLP oriented approach to extract features is presented by Changuel et al.

(2015). They state that the problem of determining an effective learning path from a cor-
pus of documents depends on the accurate identification of concepts that are learning
objectives and the identification of concepts that are prerequisites. For this purpose, an
automatic method for concept annotation driven by supervised machine learning algo-
rithms is proposed. The machine learning algorithms are applied on a set of contextual
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and local characteristics. For each concept identified in the text (the automatic annota-
tion tool Text2Onto was used Cimiano and Völker (2005)) a set of n-grams (i.e. sequences
of n words) from the contextual neighborhood are extracted: Part-Of-Speech (POS) tags
and stemmed words windows. A binary contextual feature is then built to indicate the
absence or presence of each n-gram in a given contextual window. Additionally, a set
of local features are also calculated: (i) features that indicate if the concept is written in
bold, italics, colored or big size format compared with the rest of the document text, (ii)
capitalization that indicates if the concept has a capitalized first letter and (iii) syntac-
tic features that indicate the syntactic information about the concept (i.e. subject, direct
object, a compound noun, etc). Authors of this work state that experiments conducted on
a dataset composed by 150 HTML documents give a precision greater than 70% in the
categorization of the concepts.
Gasparetti et al. (2018) uses a machine learning approach to identify a prerequisite

relationship between two learning resources. This research assesses the relationship of
prerequisites between learning resources and not between concepts. Given a pair of learn-
ing resources, a feature vector is built by considering both the lexical and wikipedia-based
attributes extracted from their content. Then, a binary classifier is trained to recognize a
prerequisite relationship. Each learning resource is annotated with the Wikipedia articles
found in the text using Tagme tool (Ferragina and Scaiella 2012). Based on the annota-
tions, they calculate: (i) a taxonomic distance between two resources using the common
categories in the category hierarchy of Wikipedia, (ii) the number of hyperlinks that link
annotations of the two resources. The evaluation of prerequisite relationships was car-
ried out in 14 different domains and the results show a precision above 70%. Different
from previous learning-based methods that require a training set and an extensive feature
extraction process, a simple reference distance RefD is proposed by Liang et al. (2015)
to measure a prerequisite relation among concepts. This measure can be easily adapted
to other contexts and measures of similarity or reference, however, RefD is less accu-
rate than supervised proposals (Pan et al. 2017). Finally, (Wang et al. 2016) proposes a
strategy to obtain concepts maps from textbooks in which concepts are linked with pre-
requisite relationships. A set of objective functions is proposed taking advantage of the
order and frequency in which concepts appear in the textbook structure. This work does
not produce a relation between two concepts but rather a domain concept map.
Our approach differs from previous ones as it exploits semantic relations in KGs to

identify concepts prerequisites. Figure 1 shows an example of the type of knowledge that
can be exploited in a KG. Let C be the concept space of a KG and c ∈ C a target con-
cept for which we want to know its prerequisites. Our hypothesis is that it is possible
to exploit the knowledge presented in KG about a given concept and its relationships to
identify prerequisite concepts. A concept in a KG is basically a node connected to other
concepts through predicates (edges) that describe semantic relationships. According to
(Damljanovic et al. 2012) it is possible to exploit two types of knowledge depending on the
predicate that are considered. The first type is the hierarchical knowledge that is acquired
through predicates that express membership and child-parent relationships. This type of
knowledge describes the membership of the concept to a set of classes or categories. The
second type of knowledge is established by transversal predicates that express a direct
non-hierarchical semantic relationship between two concepts. Figure 1 shows both types
of predicates for the “For Loop” concept.
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Fig. 1 Fragment of hierarchical (gray boxes) and non-hierarchical (blue boxes) knowledge for the “ For Loop ”
concept extracted from DBpedia KG

Prerequisite identification approach
The proposed process for the identification of prerequisites is presented in Fig. 2. The pro-
cess is composed of twomainmodules. The candidate searchmodule and the prerequisite
evaluationmodule. The candidate searchmodule is responsible for retrieving related con-
cepts that may be potential prerequisites and worth evaluating. Since in practice it is not
computationally feasible to evaluate the prerequisite relationship between the target con-
cept and all the concepts that belong toC,5 it is necessary to perform a search for potential
prerequisite candidates. This candidate set is built in two steps: first, exploiting the hier-
archical and non-hierarchical knowledge that can be extracted from the target concept
via linkage analysis, and, second, using a pruning method to reduce the set of generated
candidates. As a result of the search module, a final candidate set of concepts M is then
obtained.
The second module evaluates the prerequisite relation between all possible pairs of

concepts of the final candidate set and the target concept (i.e., {(c, cp)|∀cp ∈ M}). The
5The number of concepts in a KG is usually in the order of millions.
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Fig. 2 Prerequisite Concept identification process. Target concept c in yellow

evaluation is carried out by means of a supervised model and a set of features extracted
from the KG and scholarly paper corpus.
The result of this two modules process is a list of prerequisites for the target concept c.

The following sections explain in detail the candidate searchmodule, the pruning method
and the supervised model.

Candidate searchmodule

The candidate search module builds an initial list of candidates composed of the con-
cepts sharing membership categories with the target concept and of concepts linked with
the target concept through non-hierarchical properties:
(i) Common memberships (CM): All concepts that share a common category with

the target concept are retrieved. Figure 1 shows that all concepts belonging to the “Cate-
gory:Iteration in programming” are included as prerequisite candidates for the “For Loop”
target concept.
(ii) Linked Concepts (LC): Concepts linked to the target through non-hierarchical

paths up to lmax hops are added to the candidate set. lmax is a configurable parameter that
defines the maximum path length considered between the target and the farthest candi-
date concept to be considered. Figure 1 shows that the concepts “Control flow”, “Iteration”,
“Do while loop” and “Control variable” are retrieved for lmax = 1. Considering lmax = 2,
the concept “Variable (computer science)” is also included. It is important to note that
we do not store all paths but only the discovered neighborhood as a list of concepts
LCc = {

nc1 , nc2 , . . . , ncm
}
.

Concept pruning via semRefD

Our concept pruning strategy is based on a simple measure that analyzes references
between concepts. This measure, named RefD, was proposed by (Liang et al. 2015) and is
originally calculated to evaluate the degree to which a concept ca requires a concept cb as
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a prerequisite. The main notion behind RefD is that if most related concepts of ca refer to
cb but few related concepts of cb refer to ca, then cb is more likely to be a prerequisite of
ca. RefD is defined as:

RefD(ca, cb) =
∑k

j=1 i(cj, cb)s(cj, ca)
∑k

j=1 s(cj, cb)
−

∑k
j=1 i(cj, ca)s(cj, cb)
∑k

j=1 s(cj, cb)
(1)

where k is the size of the concept universe, i(cj, ca) is an indicator function showing the
existence of a reference between cj and ca, and s(cj, ca) weights the relationship between
cj and ca. The values of RefD (ca, cb) vary between -1 and 1. The closer to 1 the more likely
it is that cb is a prerequisite of ca.
Although it has been proven that supervised methods overcome RefD in the task of

evaluating prerequisite relations (Liang et al. 2018), its simplicity makes it ideal to be
used as a pruning strategy. In our approach, RefD was slightly modified to be applied to
KGs. The modified version of RefD, called SemRefD, takes into account semantic paths6

in KGs to indicate the likelihood of one concept being a prerequisite of another. The
weighting function s(cj, ca) takes into account the common neighbors concepts in the KG
and the distance between categories in the KG hierarchy whereas the indicator function
i(cj, ca) takes into account the existence of a property path between the target and related
concepts. The weighting and indicator functions are described as follows.

Hierarchical weighting (HW)

The link weight between two concepts is measured in terms of the distance of their cat-
egories in the hierarchy structure of the KG. If A is the set of categories of the concept ci
and B is the set of categories of the concept cj, their HW is computed as:

HW
(
ci, cj

) = maxcati∈A,catj∈Btaxsim(cati, catj) (2)

taxsim(cati, catj) = δ(root, catlca)
δ (cati, catlca) + δ

(
catj, catlca

) + δ(root, catlca)
where δ(a, b) is the number of edges on the shortest path between a and b, and catlca is
the Lowest Common Ancestor (LCA) of cati and catj. Given the hierarchy of categories
T, the LCA of two categories cati and catj is the category of greatest depth in T that is
the common ancestor of both cati and catj. taxsim expresses the similarity between two
categories in terms of the distance to their LCA compared to the LCA depth.

Non-hierarchical weighting (NHW)

The common neighbors and their distances are used as a weighting strategy. We first
extract the linked concepts LC for ci and cj, then, NHW is calculated as:

NHW
(
ci, cj

) =
∑

nc ∈ (LCci∪LCcj )

β lci ,nc ∗ β
lcj ,nc (3)

where β l (0 < β ≤ 1) is a penalization strategy depending on the path length. The larger
the path length, the larger the penalty. lci,nc is the path length between the concept ci and
the linked concept nc. A large weighting value using NHW is assigned if the concepts

6https://www.w3.org/TR/sparql11-property-paths/

https://www.w3.org/TR/sparql11-property-paths/
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share many common neighboring concepts and these neighbors are as close as possible
to them.

Joint weighting (JW)

The joint similarity measure is expressed as the sum of HW and NHW :

JW
(
ci, cj

) = HW
(
ci, cj

) + NHW (ci, cj) (4)

As for the indicative function, the existence of a path between concepts is used. So, if
there is a path of length l ≤ lmax that connects the concepts ci and cj, necessarily each
concept must be in the LC of the other concept with maximum path length l. Therefore,
the indicative function is calculated as:

i(ci, cj) =
⎧
⎨

⎩
0 if cj /∈ LCci

1 if cj ∈ LCci
(5)

The three weighting strategies mentioned results in three possible variations of the
SemRefD: SemRefDHW , SemRefDNHW , and SemRefDJW . These variations are used in our
experiments and the results are presented in what follows.

Prerequisite evaluationmodule
This module focuses on determining prerequisite relationships between concepts using
machine learning techniques modeling the problem as a binary classification in which
the output labels are “Prerequisite” and “No prerequisite”. Different binary classifiers are
implemented based on a set of features that are extracted from the KG and a document
corpus. For a given concept pair (ca, cb), the following features are calculated: corpus-
based features and graph-based features.

Corpus features

This set of features is designed to be calculated over a document corpus. The main moti-
vation behind using corpus-based features is to analyze the co-occurrence of the concepts
in documents. Given the concept pair (ca, cb), if in most of the documents where ca
appears, cb also occurs, but not vice-versa, it is more likely that cb is a prerequisite of ca.
We capture the previous principle with the following features:

• Pcorpus(ci) is the probability of finding a document that contains the ci concept in the
corpus. Pcorpus(ci) = Documents that contains ci

Total documents in Corpus .
• Pcorpus(ci|cj) is an estimation of the conditional probability. We look for occurrences

of ci in the documents where cj occurs.
• Pcorpus(ci, cj) is an estimation of the joint probability

Pcorpus(ci, cj) = Pcorpus(ci|cj)Pcorpus(cj).
• CCR(ci, cj) is the portion of documents in which both concepts occur in the corpus

Documents that contains ci∩Documents that contains cj
Total documents considered .

It is important to mention that given that a corpora usually contains millions of doc-
uments, we do not analyse the complete set of documents to calculate Pcorpus(ci|cj),
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Pcorpus(ci, cj) and CCR(ci, cj). Only top documents are considered. We select top docu-
ments using the search API of the considered corpus. More details about the selected
corpus will be given in the next section.
The final set of corpus-based features is composed by: Pcorpus(ca), Pcorpus(cb),

Pcorpus(ca|cb), Pcorpus(cb|ca), Pcorpus(ca, cb) and CCR(ca, cb).

Graph features

The following characteristics are extracted from the KG. We take advantage of the
interconnected RDF structure of the KG to extract a set of graph-based features.

• The Semantic Connectivity Score (SCS) proposed in Nunes et al. (2015). SCS
measures latent connections between concept pairs in large graphs like KGs.
SCS(ca, cb) is computed as:

SCS(ci, cj) = 1 − 1

1 +
(∑lmax

l=1 β l|paths<l>
ci,cj |

) (6)

|paths<l>
c,cj | is the number of paths of length l between the target concept ci and the

concept cj in the KG, lmax, as was stated above, is the maximum length of path
considered, and β is a damping factor that penalizes longer paths.

• Pgraph(ci). The probability that a given concept appears in a statement in the RDF
graph.

• Pgraph(ci, cj). The joint probability calculated as the number of statements where both
ci and cj appears divided by the total number of statements in the graph.

• Pgraph(ci|cj). The conditional probability calculated as P(ci|cj) = P(ci,cj)
P(cj)• PR(ci, cj). The difference between the pageranks of the concepts in the graph. The

page rank values were borrowed from (Thalhammer and Rettinger 2016).
• RIO(ci). The ratio between the number of incoming links (In(ci)) and the number of

outgoing links (Out(ci)) for ci.
• CN(ci, cj). The number of concepts that share a link with ci and cj (i.e. common

neighbors).
• LP(ci, cj). Link Proportion. LP = |In(ci)∩In(cj)|

In(ci)

The final set of graph-based features is composed by: SCS(ca, cb), Pgraph(ca), Pgraph(cb),
Pgraph(ca, cb), Pgraph(ca|cb), Pgraph(cb|ca), PR(cb, ca), In(ca), In(cb), Out(ca), Out(cb),
CN(ca, cb), DC(ca, cb), LP(ca, cb), and LP(cb, ca).
The training of the supervised model is presented in the “Implementation” section.

Implementation
The implementation of SemRefD and the extraction process of the set of features for the
supervised learning method were performed using the following resources:

• DBpedia: DBpedia is the most appropriate open KG to construct the semantic
representation. The calculation of the prerequisite relationship must therefore be
performed using DBpedia since it is not possible to uncouple both processes. The
hierarchical structure of a concept is drawn from categories in DBpedia categorical
system. Categories are extracted through dct:subject predicate, but only
categories in the hierarchical structure processed by Kapanipathi et al. (2014) were
used to avoid disconnected categories and cycles. For all our experiments, we set
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β = 0.5 and lmax = (1, 2) following previous experimental results presented in
Manrique and Mariño (2017) that also follow this approach for penalizing property
paths in DBpedia.

• Corpus of documents: The Corpus based features previously explained in
“Corpus features” section are calculated over the Core corpus7. This corpus contains
more than 131 millions documents to date. Using the corpus’ search APIs, relevant
documents for each concept are retrieved and analyzed. For the calculation of
Pcorpus(ci), it is assumed that the total number of documents returned by the Core
search API using ci as query corresponds to the total number of documents that
contains ci. Additionally, only the top 500 documents returned by the Core search
engine are considered for the calculation of the conditional probability Pcorpus(ci|cj)
and the common results CCR(ci, cj). We experimentally determined that the top 500
documents is computationally adequate. Documents in a lower ranking position only
contain sporadic mentions of the considered concepts.

Supervised model training process

Two datasets were used for training and evaluation of the supervised learning model.
The RefD20158 dataset (Liang et al. 2015), and the university course dependencies UCD
dataset9 (Liang et al. 2017). For all datasets, a manual reconciliation between the labels of
the concepts and their respective URI in DBpedia 2016-10 were performed. For some con-
cepts this reconciliation was not possible; as a result, some concept pairs were discarded.
Details of the datasets are shown in Table 1.
The RefD2015 and UCD datasets contain concept prerequisite pairs extracted from

university course dependencies. They developed a Web scraper to obtain the course
dependencies from different University online course catalogs. Then, courses were linked
to Wikipedia pages using automatic tools and manual pruning. While RefD2015 contains
concept pairs in Computer Science (CS) andMath (MATH) domains, UCD only contains
concept pairs in Computer Science (CS). To accurately label a given concept pair in the
UCD dataset, each pair got labels from three different annotators. The majority of votes
decided the final label assigned. In RefD2015, on the other hand, two experts verified all
concept pairs.
We employed XGBoost, one of the most powerful supervised learning algorithms to

date (Chen and Guestrin 2016). The hyperparameters of XGBoost are selected using a
grid-search over a parameter grid, applying a 10-fold cross-validation technique and using
the 80% (selected using stratified sampling) of the dataset. The classes in the datasets
were balanced by oversampling of the minority class via SMOTE technique (Chawla et
al. 2002) during cross-validation. The values used were: (i) max depth: 40, (ii) min child
weight: 1, and (iii) learning rate: 0.14. We tested the resulting XGBoost model by employ-
ing the remaining 20% of the dataset. The results obtained are reported in Table 2. For all
experiments, we report the average Accuracy (A), Precision (P), Recall (R) and F1-score
(F1).
Although the results are slightly worse to those reported in Manrique et al. (2018), a

smaller number of features were employed here obtaining a precision greater than 90%.

7https://core.ac.uk/
8https://github.com/harrylclc/RefD-dataset
9https://github.com/harrylclc/eaai17-cpr-recover

https://core.ac.uk/
https://github.com/harrylclc/RefD-dataset
https://github.com/harrylclc/eaai17-cpr-recover


Manrique et al. Smart Learning Environments            (2019) 6:21 Page 11 of 18

Table 1 Supervised Model Training and Evaluation Datasets

Dataset Domain # Pairs # Prerequisites

RefD2015
MATH 685 75

CS 678 108

UCD CS 1685 1004

This supervised model is used as the core component in the prerequisite evaluation
module (see Fig. 2).
Using the XGBoost classifier trained, we perform a feature importance analysis via the

“gain” method which calculates each feature importance as the average gain over the
number of splits (across all trees) that include that feature 10. The top 5 features are:
Pcorpus(cb|ca), LP(ca, cb), CN(ca, cb), and SCS(ca, cb). The most important feature accord-
ing to this analysis is Pcorpus(cb|ca), which indicates that the occurrence of concepts in a
corpus is a great indicator of the prerequisite relationship. On the other hand, LP(ca, cb),
CN(ca, cb) and SCS(ca, cb) measure the interconnection of the concepts in the graph in
different ways. LP relates the concepts that have an output link to ca and cb.CN relates the
concepts that share an outgoing link with ca and cb. Finally, SCS weighs the relationship
between the concepts ca and cb in the graph based on the paths that join them and their
length. In general, based on the results obtained here and in related studies, the analysis of
the interconnections of the concepts in the graph are a good indication of a prerequisite
relationship.

Evaluation and discussion
To evaluate the complete prerequisite identification approach (Fig. 2) we selected 80 tar-
get concepts in the domains of Computer Science (CS),Math (MATH), Physics (PHY) and
Biology (BIO) (25 CS concepts, 25 MATH concepts, 15 PHY concepts and 15 BIO con-
cepts). For each target concept the entire process was carried out and a list of prerequisites
was obtained.
Table 3 shows, as an example, the size of the initial set of candidates before pruning,

for each search strategy for two concepts. Notice the vertiginous increase in the num-
ber of concepts when lmax = 2. Considering that the diameter of the DBpedia graph is
6.2711 values of lmax greater than 2 could lead to an explosion in the number of concepts
retrieved. It is also important to note that the lack of homogeneity in the sizes of the
candidate set when CM is used as a search strategy. While the “Machine Learning” con-
cept is related to three different categories to which 456 different concepts belong, “Deep
Learning” is related to only one category to which only 10 concepts belong. This can be
attributed, to the fact that, there is no guarantee that there are a homogeneous number
of categories associated with the concepts, and that relatively recent concepts are not so
well described in the DBpedia version used (2016-10).
On the initial candidate set the pruning method using the SemRefD function is applied.

Table 4 shows the final candidate set size (i.e., |M|) after applying the different proposed
versions of SemRefD for the “Machine Learning” concept. For a concept in the initial can-
didate set to be included in M the value of SemRefD must exceed a threshold value θ .
We select three different values of θ = {0.1, 0.2, 0.3}, as a result, for each target concept,

10https://xgboost.readthedocs.io/en/latest/python/python_api.html
11see http://konect.uni-koblenz.de/networks/dbpedia-all

https://xgboost.readthedocs.io/en/latest/python/python_api.html
http://konect.uni-koblenz.de/networks/dbpedia-all
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Table 2 Supervised Model Evaluation

Dataset Domain Accuracy Precision Recall F1

UCD CS 0.731 0.901 0.771 0.831

RefD2015
MATH 0.841 0.91 0.843 0.875

CS 0.813 0.908 0.831 0.868

27 different M sets are built corresponding to the different combinations of the search-
ing and pruning functions. Theta values greater than 0.3 are not practical since, in some
cases, the entire initial set of candidates is empty. Considering that the original paper used
a maximum value of 0.05 for theta (Liang et al. 2015), we are being much more strict.
As shown in Table 4, the number of concepts drops drastically by applying SemRefD in
particular for θ = 0.3.
It is also clear that despite the fact that the initial set of candidates built using LC with

lmax = 2 is at least 50 times the size using lmax = 1 (see Table 3), after pruning, their
size is only at most 2.2 times the size of LC with lmax = 1. Considering that the concepts
that are in the set constructed with LC with lmax = 1 must also be found in LC with
lmax = 2, we can affirm that a large part of the concepts in M can be found through a
direct relationship with the concept (i.e. a path of length one).
In the final step all the concepts in M are evaluated via a supervised model to assess

the prerequisites relations with the target concept. Considering the complete set of target
concepts and all possibleM sets, a total of 2812 different concepts pairs were assessed by
the supervised model. Those candidate concepts identified as prerequisites constitute the
output of the complete process.
It was necessary to build a ground truth to evaluate how precise is our proposed pro-

cess. To accurately label a given concept pair, we rely on human expert knowledge. We
recruited 5 adjunct professors, 1 PhD student and 4 master students with backgrounds
in the different domains involved. Three master students and one adjunct professor had
CS andMATH backgrounds, two adjunct professors and the PhD student had PHY back-
ground whereas two professors and one master student had BIO background. For each
candidate pair, at least three annotators decided whether the candidate concept is a pre-
requisite of the target concept or not. A majority vote rule was used to assign the final
label. Due to the low and fixed number of participants per domain, the Fleiss’ Kappa inter-
rater reliability measure of agreement were used. We obtained a value of κ = 0.42 for CS,
κ = 0.56 for MATH, κ = 0.31 for PHY and κ = 0.22 for BIO. According to (Landis and
Koch 1977), this indicates amoderate agreement for CS andMATH, and a fair agreement
for PHY and BIO.
Tables 5 and 6 present the global results of the evaluation in terms of precision (P), true

positives (TP) and false positives (FP) calculated using the previously constructed ground
truth. While Table 5 presents the results obtained for CS and MATH, Table 6 presents

Table 3 Resulting initial candidate size per search strategy for “Machine learning” and “Deep
Learning” target concepts

Machine learning Deep learning

CM 456 10

LC (lmax = 1) 220 268

LC (lmax = 2) 10837 15008
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Table 4 Final candidate set size per search / pruning strategy for “Machine Learning” target concept

CM LC (lmax = 1) LC (lmax = 2)

SemRefDHW > 0.1 33 19 42

SemRefDHW > 0.2 15 5 16

SemRefDHW > 0.3 2 2 4

SemRefDNHW > 0.1 16 11 20

SemRefDNHW > 0.2 8 6 10

SemRefDNHW > 0.3 4 3 4

SemRefDJW > 0.1 24 15 31

SemRefDJW > 0.2 10 8 14

SemRefDJW > 0.3 4 3 4

the results for PHY and BIO. False positives should be interpreted as those concepts in
M that were incorrectly identified as prerequisites. The true positives are those concepts
that were correctly identified as prerequisites, and precision is defined as P = TP

TP+FP . In
both tables the highest values are shown in bold by pruning function and search method.
As it can be observed, the use of SemRefDHW as pruning function leads in most cases

to a high number of FP and consequently to the lowest values of precision. Unlike
SemRefDHW , SemRefDNHW led to the lowest FP values and the highest TP and, conse-
quently, precision values. This can be attributed to the fact that the common neighbors

Table 5 Results of the complete process for CS and MATH target concepts using as evaluation
metrics P (precision), TP (true positives), and FP (false positive)

CS MATH

FP TP P FP TP P

CM SemRefDHW > 0.1 90 147 0.62 54 175 0.76
SemRefDHW > 0.2 54 85 0.61 44 101 0.70
SemRefDHW > 0.3 6 11 0.65 5 14 0.74
SemRefDNHW > 0.1 31 153 0.83 23 168 0.88
SemRefDNHW > 0.2 13 80 0.86 10 87 0.90
SemRefDNHW > 0.3 3 35 0.92 2 41 0.95
SemRefDJW > 0.1 65 149 0.70 44 166 0.79
SemRefDJW > 0.2 27 84 0.76 22 100 0.82
SemRefDJW > 0.3 11 33 0.75 8 37 0.82

LC (lmax=1) SemRefDHW > 0.1 67 110 0.62 54 129 0.70
SemRefDHW > 0.2 16 38 0.70 14 43 0.75
SemRefDHW > 0.3 6 15 0.71 4 17 0.81
SemRefDNHW > 0.1 19 129 0.87 17 150 0.90
SemRefDNHW > 0.2 10 72 0.88 10 87 0.90
SemRefDNHW > 0.3 3 37 0.93 2 44 0.96
SemRefDJW > 0.1 40 122 0.75 25 148 0.86
SemRefDJW > 0.2 22 67 0.75 15 75 0.83
SemRefDJW > 0.3 8 26 0.76 6 28 0.82

LC (lmax=2) SemRefDHW > 0.1 104 144 0.58 78 172 0.69
SemRefDHW > 0.2 56 95 0.63 42 102 0.71
SemRefDHW > 0.3 14 25 0.64 11 28 0.72
SemRefDNHW > 0.1 34 199 0.85 26 210 0.89
SemRefDNHW > 0.2 18 97 0.84 15 108 0.88
SemRefDNHW > 0.3 3 39 0.93 2 44 0.96
SemRefDJW > 0.1 82 192 0.70 53 224 0.81
SemRefDJW > 0.2 38 119 0.76 23 144 0.86
SemRefDJW > 0.3 9 36 0.80 6 38 0.86

Best values per metric and search/pruning strategy are bold
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Table 6 Results of the complete process for PHY and BIO target concepts using as evaluation
metrics P (precision), TP (true positives), and FP (false positives)

PHY BIO

FP TP P FP TP P

CM SemRefDHW > 0.1 52 49 0.485 72 59 0.45

SemRefDHW > 0.2 26 30 0.536 42 34 0.45
SemRefDHW > 0.3 3 4 0.571 4 5 0.56
SemRefDNHW > 0.1 16 52 0.765 23 61 0.73
SemRefDNHW > 0.2 7 24 0.774 10 31 0.76
SemRefDNHW > 0.3 2 12 0.857 2 14 0.88
SemRefDJW > 0.1 32 49 0.605 50 59 0.54
SemRefDJW > 0.2 13 28 0.683 21 34 0.62
SemRefDJW > 0.3 7 11 0.611 9 13 0.59

LC (lmax=1) SemRefDHW > 0.1 40 35 0.467 50 42 0.46
SemRefDHW > 0.2 9 13 0.591 14 15 0.52
SemRefDHW > 0.3 3 5 0.625 4 6 0.60
SemRefDNHW > 0.1 10 47 0.825 18 56 0.76
SemRefDNHW > 0.2 5 25 0.833 10 29 0.74
SemRefDNHW > 0.3 1 12 0.923 3 15 0.83
SemRefDJW > 0.1 26 42 0.618 29 51 0.64
SemRefDJW > 0.2 13 22 0.629 19 28 0.60
SemRefDJW > 0.3 5 9 0.643 6 11 0.65

LC (lmax=2) SemRefDHW > 0.1 55 50 0.476 84 58 0.41
SemRefDHW > 0.2 29 29 0.500 46 37 0.45
SemRefDHW > 0.3 7 7 0.500 11 10 0.48
SemRefDNHW > 0.1 21 61 0.744 35 79 0.69

SemRefDNHW > 0.2 10 33 0.767 15 37 0.71

SemRefDNHW > 0.3 2 13 0.867 3 15 0.88

SemRefDJW > 0.1 41 62 0.602 69 74 0.52

SemRefDJW > 0.2 21 38 0.644 32 47 0.59

SemRefDJW > 0.3 5 11 0.733 7 13 0.65

Best values per metric and search/pruning strategy are bold

is a better indicator of a strong link between concepts than the sharing of common cat-
egories (or nearby categories). The taxonomy of KG categories may not be descriptive
enough to identify a strong link between the concepts. For example, the concepts “Arti-
ficial Intelligence” and “Neuroscience” despite being highly related concepts and sharing
many common concepts in DBpedia, do not share any common category and the distance
between categories in the taxonomy is not small enough to indicate a strong relationship.
The above applies to all analyzed domains.
Regarding θ , it is clear that with its increase there is an increment in the precision at the

expense of a reduced number of identified prerequisites. An increase of theta from 0.1 to
0.3 implies an average reduction of 87% in TP (across all domains). An appropriate trade-
off between the precision and the number of correct prerequisite concepts identified is
achieved when the theta value is 0.2.
We further explored the performance of the search strategies. Initially we expected that

the final setM obtained by using LC(lmax = 2)would bemuch larger compared to the rest
of the strategies because the initial candidate set built with this strategy was on average
27 times larger than the one built with LC(lmax = 1) and 35 times larger than the one
built with CM. However, the average increase inM was only 1.5 times larger. This means
that between 27 and 35 times more SemRefD computations were made to increase the
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concepts in the final set by only 1.7 times. This is clearly not practical and new ways of
exploring linked concepts with lmax = 2 should be proposed. One possible solution is to
reduce the number of predicates that are considered in the traversing step.
Regarding CM we discovered that it is not an appropriate strategy when: (a) concept

categories are far from the concept main domain, and (b) the categories have a very small
number of members. Consider the objective concept “Dijkstra’s algorithm” and two of its
associated categories: “ Dutch inventions ” and “ 1959 in computer science”. The category
“Dutch inventions” is an example of the case (a) since most of the member concepts are
associated with unrelated domains. For its part, the category “1959 in computer science”
only contains one member and is precisely the concept “Dijkstra’s algorithm”; therefore,
this category does not bring any new concept to the candidate set (case (b)).
Due to the above evidences the best search strategy is LC(lmax = 1) since the concepts

linked directly by a single predicate represent in most cases a significant semantic rela-
tionship (Manrique and Mariño 2017). Additionally, the number of SemRefD calculation
keeps small while the number of TP still remains significant.
Table 7 shows the comparison of the results of the different domains using LC(lmax = 1)

as a search strategy, SemRefDNHW and θ = 0.2. We identify that the set of candidate
concepts |M| is smaller for the BIO and PHY domains. On average, a concept in these
domains has a candidate set twice as low as a concept in MATH or CS. This eventually
results in a much smaller set of prerequisites. The above is a clear indication that the
BIO/PHY concepts have a smaller number of interconnections between them in the KG,
or equivalent, they are not so well described. As all our proposal is based on analyzing
the connections between the concepts in the KG (i.e. SemRefD and the features of the
supervised learning model), a lower performance was expected in comparison with the
other domains considered.
It should also be noted that our supervised model was trained using concepts in the

MATH and CS domains, so its prediction may be less accurate in other domains. Building
broader training sets for the task of identifying prerequisites remains a subject of recent
research (Liang et al. 2018).

Limitations
Regarding the prerequisite identification process, our approach presents the following
limitations:

Table 7 Results comparison per domain using LC(lmax = 1), SemRefDNHW and θ = 0.2

CS FP 10

TP 72

P 0.88

MATH FP 10

TP 87

P 0.90

PHY FP 5

TP 25

P 0.833

BIO FP 10

TP 29

P 0.74
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• The first limitation is that both the target concepts and the prerequisite concepts
must exist in the KG concept space, in our case DBpedia. Although the knowledge
represented in DBpedia is comprehensive, some concepts may be poorly modeled or
even not yet represented affecting the performance of the supervised method to
detect the prerequisite relationship and the prunning strategies. However, KGs are
evolving rapidly. There is a constant increase in the number of concepts and
relationships that are included in existing knowledge graphs such as DBpedia,
Wikidata and YAGO. With the development of more complete KGs, a better
performance of the strategies proposed in this article is to be expected.

• A second limitation is the lack of prerequisite annotated datasets in domains
different from the ones used in this research to train the supervised model. Datasets
that include a larger set of knowledge domains will allow building more generalizable
models.

Finally, we want to enrich the whole process by taking into consideration competencies
and learner profiles. Our approach is intended as one-size-fits-all, as, for now, we are not
considering learner profiles to determine core aspects such as learning styles, context,
and motivations.

Conclusion and future work
This paper presents a process for the identification of concept’s prerequisites that exploit
mainly the semantic relations that can be found in a KG. With different search strategies
and pruning functions, we are able to reduce the KG concept space to a candidate set of
potentially prerequisites concepts. The results show that LC(lmax = 1) and SemRefDNHW
produced the best candidate sets to be used as input for the supervised model in the
evaluation step. The final precision obtained using the above functions varies between
76% and 96% and depends mostly on a configurable parameter θ of the pruning method.
Our future work will be oriented to strategies that consider the type of predicate in the

candidate search as well as the use of other KGs different fromDBpedia and combinations
of them. Instead of managing KGs independently, we are interested in strategies that allow
us to combine multiple KGs. This is a complex task as it is necessary to develop methods
to identify vocabulary equivalences and perform a linkage process.
Furthermore, as discussed above, we want also to build datasets that cover other knowl-

edge domains for the construction of prerequisite identification supervised models. We
are interested in evaluating our strategies in domains such as History, Geography, Poli-
tics and Economics. This, of course, is not a trivial task insofar in most of cases expert
knowledge is required for the ground truth conformation.
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wikipedia: Towards general importance scores for entities, (pp. 227–240). Cham: Springer.

Wang, S., Ororbia, A., Wu, Z., Williams, K., Liang, C., Pursel, B., Giles, C.L. (2016). Using prerequisites to extract concept maps
from textbooks, In Proceedings of CIKM ’16. https://doi.org/10.1145/2983323.2983725 (pp. 317–326). New York: ACM.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.aclweb.org/anthology/W12-2037
https://www.aclweb.org/anthology/W12-2037
https://doi.org/10.1145/2983323.2983725

	Abstract
	Keywords

	Introduction
	Background and related work
	Prerequisite identification approach
	Candidate search module
	Concept pruning via semRefD
	Hierarchical weighting (HW)
	Non-hierarchical weighting (NHW)
	Joint weighting (JW)

	Prerequisite evaluation module
	Corpus features
	Graph features

	Implementation
	Supervised model training process

	Evaluation and discussion
	Limitations
	Conclusion and future work
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

